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ABSTRACT
In this paper, we extensively study the use of syntactic and semantic
structures obtained with shallow and deeper syntactic parsers in the
answer passage reranking task. We propose several dependency-
based structures enriched with Linked Open Data (LD) knowledge
for representing pairs of questions and answer passages. We use
such tree structures in learning to rank (L2R) algorithms based on
tree kernel. The latter can represent questions and passages in a tree
fragment space, where each substructure represents a powerful syn-
tactic/semantic feature. Additionally since we define links between
structures, tree kernels also generate relational features spanning
question and passage structures. We derive very important find-
ings, which can be useful to build state-of-the-art systems: (i) full
syntactic dependencies can outperform shallow models also using
external knowledge and (ii) the semantic information should be de-
rived by effective and high-coverage resources, e.g., LD, and in-
corporated in syntactic structures to be effective. We demonstrate
our findings by carrying out an extensive comparative experimenta-
tion on two different TREC QA corpora and one community ques-
tion answer dataset, namely Answerbag. Our comparative analysis
on well-defined answer selection benchmarks consistently demon-
strates that our structural semantic models largely outperform the
state of the art in passage reranking.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Processing—Text
analysis; Language parsing and understanding; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—Re-
trieval models

General Terms
Algorithms, Experimentation

Keywords
Question Answering; Learning to Rank; Kernel Methods; Struc-
tural Kernels; Linked Data
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1. INTRODUCTION
Previous work has shown that advanced natural language pro-

cessing can positively impact the accuracy of Question Answering
(QA) systems. As shown by the experience in the TREC QA task,
e.g., [38], the selection of the right passage expressing the answer
requires to consider the relation between the question and the pas-
sage text. In other words, it is not enough measuring the similarity
between question and passage, but it is also important analyzing
how some concepts in the questions, e.g., constituting the focus,
are structured along with other concepts in the answer passage. For
instance, in the following question/answer passage (Q/AP) pair1:
Q: What sports stadium has been billed as “the eighth wonder of the
world"?
AP: The Titans used to be called the Oilers and played in the dilapidated
Astrodome; if this was the eighth wonder of the world, we live on a shabby
little planet indeed.

the question focus, sports stadium is linked to the property the
eighth wonder of the world. Since in the AP the property above
is also stated for Astrodome, we infer that the latter is the correct
answer. The inference is about finding two related statements in
Q and in AP regarding the Q focus, where the entities in the state-
ments may not necessarily match. Automatically selecting the right
properties to be considered is a difficult task that must exploit the
relationship between Q and AP. For example, the property Titans
used to be called the Oilers can be important but it is not useful for
answering the question. It follows that the relation between Q and
AP for property selection is necessary.

Since manually selecting properties, i.e., generating rules for any
pairs of Q and AP is rather difficult or even impossible, automatic
feature engineering approaches based on kernel methods, e.g., [31],
have been developed, where syntactic and semantic tree represen-
tations of the Q/AP pairs are used in kernel-based L2R algorithms,
e.g., SVMs [33]. The role of kernels was to implicitly generate syn-
tactic patterns (i.e., tree fragments) to be used as features in SVMs.

However, this approach would not be able to solve the example
above since, to answer the question, Astrodome has to be identified
as a stadium. This is essential to derive that the focus of Q, sta-
dium, and Astrodome in AP both own the same property, i.e., to be
“the eighth wonder of the world". Without this link many incorrect
entities may be selected as many entities enjoy the property above2.

The solution (provided in [13]) for solving this case is the use
of semantic resources: the lexical answer type (LAT) of the ques-

1This example from TREC QA corpus will be our a running exam-
ple for the rest of the paper.
2For example see http://en.wikipedia.org/wiki/
Eighth_Wonder_of_the_World#Things_labeled_
as_the_Eighth_Wonder_of_the_World



tions, e.g., as provided by Wikipedia3 category, can be matched
against the one of the answers for improving candidate selection,
e.g., for Astrodome the LAT is stadium. More in general, seman-
tic resources help to reduce data sparseness and thus they enable
matches between question and answer passages. However, finding
the focus word and its category may be difficult and error prone and
most importantly does not allow for solving non-factoid questions.

In this paper, we carried out an extensive study on the use of
syntactic and semantic structures enriched with LD semantics for
answer passage reranking. To make the feature design step eas-
ier, we adopt L2R models based on SVMs and structural kernels,
which provide SVMs with structural patterns, automatically gener-
ated from Q/AP syntactic structures. The latter are enriched with
relational semantic knowledge of LD by adding links between the
entities in the Q and AP. In particular, we followed the steps below:

First, we design a representation for the Q/AP pair by engineer-
ing a pair of shallow syntactic trees connected with relational nodes
(i.e., those matching the same words in the question and in the an-
swer passages). This approach capitalizes on our successful models
proposed in [31, 32, 29, 37] but we also explore deeper linguistic
structure such as dependency trees.

Secondly, we use YAGO [16], DBpedia [4] and WordNet [12]
to match constituents from QA pairs and use their generalizations
in our semantic structures. Following our previous work in [37],
we employ word sense disambiguation to match the right entities
in YAGO and DBpedia, and consider all senses of an ambiguous
word from WordNet. For example, our system automatically de-
rives that Astrodome is a stadium and thus such concept is con-
nected to the question structure: stadium has been billed as “the
eighth wonder of the world", through the word stadium. This way,
we obtain connected structures of pairs of texts, which potentially
contain patterns useful for capturing the relatedness of question and
answer passage.

Thirdly, we apply structural kernels to the above structures by
exploiting SVMs for automatically learning classification and rank-
ing functions. In particular, we apply the Partial Tree Kernel (PTK)
[24], which can generate the richest space of tree fragments.

Next, we experiment with three different corpora, (i) the stan-
dard TREC QA corpus for passage reranking, (ii) a QA benchmark
built for testing sentence reranking [42], and (iii) a community QA
dataset based on Answerbag4. We tested several models combining
(i) traditional feature vectors, (ii) automatic semantic labels derived
by statistical classifiers, e.g., question classifiers, and (iii) relational
structures enriched with LD relations. The results show that our
methods greatly improve on strong IR baseline, e.g., BM25, up to
101%, and on state-of-the-art reranking models, up to 16.0% (rela-
tive improvement), e.g., in MAP.

In the remainder of this paper, Sec. 2 reports on related work,
Sec. 3 describes our proposed classification and reranking frame-
work, Sec. 4 illustrates our basic representation approach. Sec. 5
describes our new algorithms to carry out semantic matching using
LD, Sec. 6 shows how we use LD matches for defining relational
structures, Sec. 7 presents our learning to rank models based on
tree kernels, Sec. 8 illustrates our experiments and finally, Sec. 9
derives the conclusions.

2. RELATED WORK
A referring work for our research is the IBM Watson system [13]

(hereafter referred as Watson). This is an advanced QA pipeline
based on deep linguistic processing and semantic resources. Wat-
son uses deep syntactic parsing components and a predicate-argument
3http://www.wikipedia.org
4http://www.answerbag.com/
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Figure 1: Kernel-based pair classification/reranking framework

structure (PAS) builder [22]. Additionally, it uses several semantic
resources, e.g., Wikipedia and PRISMATIC [11] combined in a ma-
chine learning-based reranker. The Watson system is very accurate
and effective but it requires to hand-craft rules, which is typically
very costly. Our approach instead can automatically build syntac-
tic/semantic patterns also exploiting LD, which can be used both
for matching and generalizing words.

Our baseline model is an updated version of our previous sys-
tem developed in [31]. However, as pointed out in the introduction,
such model does not encode dependency structure and the seman-
tic information from LD. Moreover, our previous several attempts
of using semantic information, e.g., Latent Dirichlet Allocation,
WordNet, Latent Semantic Analysis, failed to improve the struc-
tural model. In contrast, we show that our LD approach can effec-
tively encode knowledge improving on passage reranking.

More traditional work in QA using semantics and syntax can be
observed in [15, 35]. However, the complexity of the method in
[15] along with an obscure fine manual tuning, have made adaption
or just replication of such systems rather complex. Recent stud-
ies on passage reranking, exploiting structural information, were
carried out in [19], whereas other methods explored soft matching
(i.e., lexical similarity) based on NE types [1]. [28, 17] applied
question and answer classifiers for passage reranking. In this con-
text, several approaches focused on reranking the answers to defi-
nition/description questions, e.g., [34, 36].

Next, the models developed in [2, 3] demonstrate that linguis-
tic structures improve QA but the proposed approaches again are
based on handcrafted features and rules. In contrast, our method is
based on automatic feature engineering, resulting rather adaptable
to different application domains.

Regarding answer sentence rerankers, [42] proposed a proba-
bilistic quasi-synchronous grammar, inspired by machine transla-
tion, which allows to model Q/AP relations by means of syntac-
tic transformations. [41] designed a probabilistic model to learn
tree-edit operations on dependency parse trees. [14] employed a
computationally expensive tree kernel-based heuristic to identify
tree edit sequences which could serve as good features for a logis-
tic regression model. [43] further improved the [14] approach by
proposing a faster dynamic-programming based algorithm for fea-
ture extraction and extending the feature set with WordNet features.
[45] proposed a model which, in addition to syntax, incorporates
features based on rich lexical semantic knowledge, including syn-
onymy, antonymy, hypernymy and semantic similarity, obtained
from a number of external systems and resources. In our work,
we encode semantic knowledge directly into syntactic tree repre-
sentations of Q/AP and use PTK to learn the syntactico-semantic



Figure 2: Shallow chunk-based tree (CH) for the Q and AP of the running example

patterns. More recently, the answer selection task was tackled with
deep learning, e.g. convolutional deep neural networks [30] and
stacked bidirectional Long Short-Term Memory model [40].

3. PASSAGE RERANKING FRAMEWORK
Our framework uses the relations between a question (Q) and its

answer passage (AP) to rerank passages. The basic schema is dis-
played in Figure 1: given a Q we submit it as a query to a search en-
gine, which retrieves a set of candidate AP. Each Q/AP text pair is
processed by an NLP pipeline which performs basic tokenization,
sentence splitting, lemmatization, stopword removal. Various NLP
components, embedded in the pipeline as UIMA5 annotators, per-
form more involved linguistic analysis, e.g., part-of-speech (POS)
tagging, chunking, Named Entity (NE) recognition, constituency
and dependency parsing, etc.

The Q/AP text pair is processed by a Wikipedia link annotator.
It automatically recognizes n-grams in plain text, which may be
linked to Wikipedia and disambiguates them to Wikipedia URLs.
The input text is supposed to be short thus we concatenate the pair
members together to provide a larger disambiguation context to the
annotator. These annotations are then used to produce computa-
tional structures (see Sec. 4) input to pair classifiers. The semantics
of such relational structures can be further enriched by adding links
between the constituents of the two pieces of text. The relational
links can be generated by: (i) matching lemmas as in [31]; (ii)
matching the constituent types based on LD as in [37]; (iii) match-
ing the question focus type derived by the question classifiers with
the type of the target NE as in [31, 32, 29]. The resulting pairs of
trees connected by semantic links are then used to train a kernel-
based classifier Sec. 7.

4. TREES FOR Q/AP PAIRS
In our study, we design and compare several syntactic and se-

mantic structural representations of pairs of short texts, including
dependency- and shallow chunk-based tree representations.

Shallow chunk-based tree (CH). Similarly to [31, 32, 29], we
represent a pair of short texts as two trees with lemmas at leaf level
and their part-of-speech (POS) tags at the preterminal level. Preter-
minal POS-tags are grouped into the chunk nodes and the chunks
are further grouped into sentences. For example, Figure 2 shows
the shallow tree representation of the two Q and AP reported in the
introduction.

Dependency-based tree (DT1) [32]. We structure the output of
dependency parsers to design a new grammatical relation centered
tree. This is a dependency tree altered so that grammatical relations
become nodes. Lemmas and their POS tags are allocated at the leaf
and the preterminal levels, respectively. Finally, we add ‘::’ and the
first letter of the respective POS tags to the leaves, e.g., “world::n”.
Figure 3 illustrates a DT1 representation of the question from the
running example.

Dependency-phrase based tree (DT2). We further generalize
DT1 with an additional layer of chunk label nodes between the POS
and the grammatical relation node layers. Lemmas in the same
chunk or in the “object of preposition” (pobj) or the “possession
5http://uima.apache.org/

modifier”(poss) relations are grouped under the same chunk node.
Figure 4 provides an example of a DT2 structure.

Lexical-centered dependency tree (DT3) [8]. Finally, we engi-
neer DT3 in which dependency relations rel(head,child) are repre-
sented by a parent and a child node labeled head::pos and child::pos,
respectively (lemmas are specialized with the first letter of their
POS tags, i.e.,::pos). We add the information about the name of
the relation, rel, and POS of its child as the rightmost children,
with GR� and POS� tags prepended, respectively. For example,
we encode the relation nsubjpass(bill,stadium) by creating a parent-
child pair of nodes labeled bill::v and stadium::n and adding chil-
dren labeled as GR-nsubjpass and POS-NN to the latter. Figure 5
provides an example of an DT3 structure.
4.1 Encoding Relations in the Tree Pairs

Previous work has shown the importance of encoding informa-
tion about relations between question and answer passage into their
structural representations, e.g., [2, 31]. Two basic methods to en-
rich our proposed structures with relational information are de-
scribed hereafter.

Lexical relations (REL). Structural relations in both kinds of
trees are encoded using the REL tag, which links the related struc-
tures in the two texts. Our previous work [31] used hard string
match and soft-matching methods such as WordNet-based or La-
tent Dirichlet Allocation-based semantic relatedness metrics to find
related lemmas. However, soft matching did not improve the mod-
els simply using hard-matching. The POS tag and the chunk pos
tags in all representations are marked with REL label. In DT3 we
mark the POS and grammar relation nodes. For example, Figure 2
shows that the lemma “world" occurs in both Q and AP, (we high-
lighted this with the solid line box), thus the related POS and chunk
nodes are marked with REL.

Question Focus-based relations (FREL). Semantic relations
specific to QA can be derived from the question focus and cate-
gory. These are encoded using the REL-FOCUS-<QC> tag, where
<QC> is substituted with a question class in the specific examples.
As in [31], we use statistical classifiers to derive focus and cate-
gories of the question and of the NEs in the AP. We consider HUM,
LOC, ENTY, NUM, ABBR and DESC question classes [20]. Ques-
tion focus and AP chunks, which contain NEs of type compati-
ble with the question class6, are marked by prepending the above
tags to their label. Figure 2 shows an example of such label in the
dotted box, however, note that in this case the statistical classifier
has determined the focus incorrectly, as it should be stadium, in-
stead of sport. No named entities (NEs) of classes compatible with
the question class ENTY are in AP, therefore there are no REL-
FOCUS-ENTY tags in it.

5. SEMANTIC MATCH USING LD
Encoding relational information between Q and AP, i.e., links

between words or constituents, is essential for improving passage
reranking. Our previous work [32, 31, 29] has only defined two
6Compatibility is checked by means of a predefined compatibility
table. We use the following mappings: Person, Organization !
HUM ,ENTY; Misc ! ENTY; Location !LOC; Date, Time,
Money, Percentage, Set, Duration !NUM



Figure 3: Dependency tree 1 (DT1)

Figure 4: Dependency tree 2 (DT2)

Figure 5: Dependency Tree 3 (DT3)

basic approaches based on string matching or question classifiers.
The methods clearly suffer from (i) coverage problems, i.e., due to
word mismatch and (ii) the non-perfect coverage and accuracy of
classifiers and named entity recognizers (NER). Additionally, other
attempts to use semantic matching, e.g., based on WordNet, have
failed. Our approach targets entities defined in LD, it highly in-
creases coverage and at the same time avoids errors of classifiers.
In this work, we employ robust and accurate entity match algo-
rithms we defined in [37].

More specifically, we detect semantic relations between word se-
quences in two texts, Tent and Tgen. We look for word sequences,
e.g., noun phrases, in Tent and Tgen, which denote two classes or
a class and an entity, which are in a isSubclassOf or isa relation.
Here, class is a set of entities, where two classes, C1 and C2, are in
a subClassOf relation if C1 ✓ C2. Similarly, an entity e and class
C are in isa relation if e 2 C. We call such relation between word
sequences a Type Match (TM). For instance, the word sequences
stadium and Astrodome in the running Q/AP example are in the
TM relation, since stadium denotes a class of all the stadiums, and
Astrodome is one particular stadium. We extract knowledge about
entities, classes and their relations from the DBpedia, YAGO and
WordNet datasets available as LD.

5.1 Linked Data (LD)
LD is structured data published according to defined guidelines7.

They suggest using HTTP Unique Resources Identifiers (URIs)
for naming “things", i.e. classes, entities, relationships, and us-
ing standards such as Resource Description Framework (RDF)8

and SPARQL query language for representing and querying knowl-
edge. In RDF, knowledge is represented as a set of (subject, predi-

7http://www.w3.org/DesignIssues/LinkedData.
html
8http://www.w3.org/TR/rdf-concepts/

cate, object) triples forming a directed graph, where subjects/objects
are vertices and predicates are edges.

LD publishers reuse a number of vocabularies and ontologies
when modeling their data. RDF Schema (RDFS)9 is the core vo-
cabulary, which contains basic elements for knowledge description.
For example, its predicates rdf:type and rdfs:SubClassOf,
denote the isa and subClassOf relationships that we described
above. rdf:label predicate is utilized to describe human-
readable names of the things uniquely identified by the URIs. For
instance, in YAGO, the URIs for the stadium class and the As-
trodome entity are yago:wordnet_stadium_10429588110

and yago:Reliant_Astrodome, respectively, and the triple
expressing their relationship is (yago:Reliant_Astrodome, rdf:type,
yago:wordnet_ stadium_ 104295881).

LD published under an open license is called Linked Open Data
(LOD). In this work we use three large cross-domain datasets, namely
WordNet, DBpedia and YAGO. WordNet is a manually created
lexical database which groups synonymous words into synsets, and
stores information about their relationships, e.g., hyponymy, hyper-
nymy or meronymy. Since WordNet was created and is maintained
manually, its coverage of NEs and domain-specific classes is lim-
ited.

YAGO was automatically created by combining WordNet and
Wikipedia. YAGO construction algorithm converts WordNet synset
hypernymy/hyponymy hierarchy into a class hierarchy and adds
leaf Wikipedia categories as leaf classes to it using a heuristic category-
to-synset mapping algorithm. The Wikipedia pages which belong
to these categories become individuals of the resulting YAGO classes.
A set of heuristics is employed to obtain facts about them from
Wikipedia pages.

DBpedia was also automatically created using Wikipedia as a
primary source of knowledge, and similarly to YAGO, Wikipedia
pages are converted to individuals, and a set of heuristics is used
to extract knowledge about them from Wikipedia infoboxes and
categories. Hierarchy of classes in DBpedia was manually con-
structed. The classes are populated with individuals using infobox-
class mappings.

Algorithm 1 Type Match algorithm
Require: Tent, Tgen - short texts; LDd - LD knowledge source
1: TM  ;
2: for all aent 2 getAnchors(Tent,LDd) do
3: for all uri 2 getURIs(anchor,Tent,Tgen, LDd) do
4: for all type 2 getTypes(uri,LDd) do
5: for all ch 2 getChunks(Tgen) do
6: agen checkMatch(ch, type.label)
7: if agen 6= ; then
8: TM  TM [ {(aent, agen)}

5.2 Type Match Detection Algorithm
In this work, we employ Algorithm 1 to detect token sequences

(hereafter denoted as anchors) in TM relation. The algorithm takes
two short texts, Tent and Tgen, an LD dataset, LDd, and an empty
set, TM , as input. It (i) scans Tent for the anchors that refer to
classes or entities in LDd (line 2); (ii) for each anchor, aent in
Tent, it detects the URIs of the corresponding entities in LDd (line
3); (iii) for each uri the algorithm extracts a list of types that gen-
eralize11 it along with their human-readable labels (line 4); (iv) fi-
nally, it iterates through chunks in Tgen and human-readable labels
9http://www.w3.org/TR/rdf-schema/

10yago: is a shorthand for http://yago-knowledge.org/
resource/

11Contain the entity or subsume the class denoted by uri



of types extracted in the previous step and checks them for string
match (line 5-6). If the last tokens12 in the chunk ch, agen, match
the last tokens of the human-readable label of a type, type.label,
extracted for aent from Tent, we set aent and agen to be in TM
relation, and add a tuple {(aent, agen)} to the TM set.

For instance, if Tent = AP and Tgen = Q from our run-
ning example and LDd = Y AGO, we: (i) scan AP for all
the anchors, which may denote YAGO classes or entities and ex-
tract their URIs. In our example, the Astrodome token in AP
is an anchor with the respective YAGO URI yago:Reliant_
Astrodome. (ii) We extract the URIs and human-readable
names of the classes with which the URIs extracted in step (i)
are in rdf:type or rdfs:subClassOf relation. For ex-
ample, yago:Reliant_Astrodome is in rdf:type relation
with the yago:wordnet_stadium_104295881 class with
the humane-readable label stadium. (iii) We look for the occur-
rences of the human-readable names of the classes extracted in
step (ii) in the Q text. In our example, the human-readable la-
bel stadium occurs in the question. Therefore, we detect a TM
relation between the Astrodome anchor from AP and the stadium
anchor from Q, i.e., in line 8 of Algorithm 1 (aent, agen) =
(“Astrodome”, “stadium”). We describe the details of the im-
plementations of getAnchors, getURIs, getTypes procedures
in the subsection below.
Detecting anchors and referent entities/classes. We detect the
sequences of tokens in text, aent, which constitute entities and
classes in an external knowledge source, i.e., YAGO, DBpedia and
WordNet. This is not as simple as a dictionary look-up as the
aent are ambiguous. However, we benefit from the fact that (i)
YAGO and DBpedia are aligned with Wikipedia pages on entity-
level by construction; and (ii) there are several so-called wikifica-
tion algorithms, which find references to Wikipedia pages in plain
text, and disambiguate them to correct Wikipedia pages [9, 23].
Thus, we wikify text to both detect about anchors in Tent and
extract URLs of the Wikipedia pages they refer to. In order to
have a richer disambiguation context, we concatenate Tent with
Tgen before passing it to the Wikification tool. We convert the
Wikipedia page names to YAGO entities URIs by using YAGO
yago:hasWikipediaUrl property. We obtain DBpedia URIs
by the Wikipedia page prefix, http://en.wikipedia.org/
wiki/, with http://dbpedia.org/resource/. For in-
stance, in our running example the wikification tool maps the
astrodome token from AP to the http://en.wikipedia.
org/wiki/Reliant_Astrodome page and YAGO con-
tains a triple (yago:Reliant_Astrodome, yago:hasWikipediaURL,
“http://en. wikipedia. org/ wiki/ Reliant_Astrodome").

In case of WordNet, we consider all noun phrases in Tent to be
the anchors and all the WordNet synsets containing them to be their
references, i.e., we have more than one reference for an anchor.
Extracting generalization classes and their names. In case of
YAGO and DBpedia, we employ RDFS predicates rdf:type and
rdfs:subClassOf to extract URIs of classes which generalize
the entities/classes returned by the getURIs procedure directly
or transitively. The URIs are HTTP unique identifiers. We ex-
tract their human-readable names by exploiting the rdfs:label
property. For example, the output of getTypes(uri =yago:
Reliant_Astrodome, LDd = Y AGO) includes yago:

12Matching last tokens helps to increase the number of TM rela-
tions. For example, the human-readable name of one of the YAGO
classes of Astrodome in the running example AP is “covered sta-
dium". We would miss the match with the “stadium" in Q, if we
only looked for the entire class name in it.

Figure 6: Fragments of a CH tree annotated in TMND mode.

wordnet_stadium_104295881 with the human-readable la-
bels such as bowl, stadium and arena.

In case of WordNet, generalizations are all the hypernyms of the
uri-s output by the getURIs procedure, and their human-readable
names are all words belonging to the hypernym synsets.

6. ENCODING RELATIONAL KNOWLEDGE
Encoding relational information in Q/AP is about establishing

links between the Q and AP structures, in turn, this is about finding
and characterizing matching between text constituents. The previ-
ous section has shown powerful methods using LD to establish a
match between entities, possibly coming from two different pieces
of text, e.g., Q and AP. Considering that in LD instances and classes
are defined, we can also define different types of the match occur-
ring between entities.

6.1 REL Based on LD Match Types
We start from the basic structures in Fig. 2 and we enrich them

by adding TM13 labels to their nodes. Let us define Lent and Lgen

as the sets of nodes corresponding to the tokens composing two an-
chors, aent and agen (from two texts Tent and Tgen), respectively.
We define the following different types of relational information:
(i) Untyped (TMN ). We add a leaf sibling node labeled TM to the
parent of each node in Lent and Lgen.
(ii) Direction-typed (TMND). By construction, one of the anchors
in TM relation, agen, refers to a class in the LD dataset that con-
tains an entity or generalizes a class to which the other anchor, i.e.,
aent refers to. We reflect this fact by adding sibling nodes labeled
TM-PARENT to the parents of all nodes in Lgen, and sibling nodes
labeled TM-CHILD to the parents of nodes in Lent. In our run-
ning Q/AP example, stadium is the generalization of the anchor
Astrodome. Therefore, as Figure 6 shows, we mark stadium as
TM-PARENT and Astrodome as TM-CHILD.
(iii) Focus-typed (TMNF ). If one of the anchors is also the ques-
tion focus, we add sibling nodes, TM-FOCUS, to the parents of
nodes in Lent and Lgen. Otherwise, we use TMN .
(iv) Combo (TMNDF ). We apply both TMND and TMNF strate-
gies thus adding two different types of nodes.

TMND , TMNF , TMNDF are more specific than TMN , there-
fore we expect them to provide more discriminative patterns. We
use the techniques described above for encoding the TM relations
into CH, DT1 and DT2 structures, while in DT3 we add a TM node
to matched lexicals as a child. Figure 6 illustrates the TMND strat-
egy applied to CH.

6.2 Wikipedia-based REL (wikiREL)
Section 3 has shown the importance of using REL tags. In our

early work [31], these were generated using hard lemma matching.
This may result in low coverage as, e.g., it does not capture syn-
onyms or different variants of the same name. Wikification tools
handle this problem, as typically they have precomputed sets of
different variants of names for the same page, extracted from inter-
nal Wikipedia links and redirection pages. Therefore, if a pair of
anchors in Tent and Tgen are annotated with the link to the same

13It is important to use different tags than REL to convey a different
type of information.



Figure 7: Some fragments generated by PTK or equivalently by
SHTK (in faster time) when applied to the question tree of Fig. 2

page by a wikification tool, we consider them to be matching and
we mark them with REL tags in the structural representations of
Tent and Tgen as described in Sec. 4.1.

7. L2R WITH TREE KERNELS
The above structures can be used by a domain expert to design

machine learning features for training relational classifiers. Given
the complexity of this task, we can rely on kernel machines, e.g.,
SVMs, for automatic feature generation. These classify a test in-
put xxx using the function: h(xxx) =

P
i ↵iyiK(xxx,xxxi), where ↵i are

the model parameters estimated from the training data, yi are target
variables, xxxi are support vectors, and K(·, ·) is a kernel function.
The latter computes the similarity between two objects. If we use
kernel functions, we do not need to represent objects with features
and thus we do not need to design features at all. In case of the con-
volution tree kernels, K counts the number of common subtrees be-
tween two trees T1 and T2 without explicitly considering the whole
fragment space. The general equations for convolution tree kernels
is: TK(T1, T2) =

P
n12N

T1

P
n22N

T2
�(n1, n2), where NT1

and NT2 are the sets of the T1’s and T2’s nodes, respectively and
�(n1, n2) is equal to the number of common fragments rooted in
the n1 and n2 nodes, according to several possible definitions of
the atomic fragments. We use the � constituting PTK [24], which
defines any possible set of connected nodes as features. These cap-
ture dependencies between structure elements, e.g., Fig. 7 shows
fragments generated for the question tree of Fig. 2.

7.1 Reranking with Kernels
The above section has shown how we can build classifiers based

on kernels. However, the same framework can be easily adapted
for learning to rank problems. In particular, we can design a func-
tion deciding which Q/AP pair is more probably correct than the
others, where correct Q/AP pairs are formed by an AP contain-
ing a correct answer to Q and a supporting justification. For this
purpose, we adopt the following kernel for (preference) reranking:
PK(ho1, o2i, ho01, o02i) = K(o1, o

0
1) + K(o2, o

0
2) � K(o1, o

0
2) �

K(o2, o
0
1). In our case, oi = hQi, APii and o0j = hQ0

j , AP 0
ji,

where Q and AP are the trees defined in the previous section, and
K(oi, o

0
j) = TK(Qi, Q

0
j) + TK(APi, AP 0

j). TK can be any
tree kernel function, e.g., PTK. Finally, we also add ( ~FV (o1) �
~FV (o2)) · ( ~FV (o01)� ~FV (o02)) to PK , where ~FV (oi) is a tradi-

tional feature vector representing Q/AP pairs. This enables the use
of standard features.

8. EXPERIMENTS
We evaluated our structural representations on the passage and

sentence retrieval subtasks. We investigated the impact of the dif-
ferent structures described in this paper on several datasets of dif-
ferent nature. Moreover, we compared the impact of various pre-
processing annotation pipelines on the final system accuracy.

8.1 Experimental Setup
We utilized three different datasets for testing our models:

TREC QA 2002/2003. TREC QA tasks provide questions along
with the answer keys, which can be used to select the passages

containing correct answers where the passages are extracted from
a given text corpus. We used a total of 824 questions from years
2002 and 200314. The AQUAINT15 corpus is used for searching
the supporting answer passages.
TREC13. Factoid open-domain TREC QA corpus prepared by [42].
The training data was assembled from the 1,229 TREC8-12 ques-
tions. The answers for the training questions were automatically
marked in sentences by applying regular expressions, therefore the
dataset can be noisy. The test data contains 100 questions, whose
answers were manually annotated.16 Consistently with the previous
work, we remove the questions that have only correct/only incor-
rect candidate APs, thus reducing the dataset to 68 questions. We
used 10 answer passages for each question for training our classi-
fiers and all the available answer passages for testing.17

Answerbag. It is a collaboratively constructed question-answer
resource. Some of the answers are marked as “professionally re-
searched” meaning that they have been professionally edited and
fact-checked thus making them high-quality QA training data. We
used 2,000 questions for training and 1,000 for testing, using 10
and 50 passages, respectively.
LD datasets. We used the core RDF distribution of YAGO218,
WordNet 3.0 in RDF,19 and the datasets from the DBpedia 3.920.
Feature Vectors. We used several similarity functions between the
pairs of texts, computed over various input representations to form
a feature vector, as described hereafter: Term-overlap features: a
cosine similarity over the text pair: simCOS(T1, T2). Input vectors
are composed of word lemmas, bi-, three- an four-grams, POS-tags.
PTK over tree representations: similarity based on the PTK score
computed for the structural representations of T1 and T2: simPTK

(T1, T2) =PTK(T1, T2), where the input trees can be both the de-
pendency trees and/or the shallow chunk trees. Search engine rank-
ing score: when experimenting with TREC QA and Answerbag,
we also use a ranking score of our search engine assigned to AP.
Learning Models. We used SVM-Light-TK21 to train our models.
The toolkit enables the use of structural kernels [24] in SVM-Light
[18]. We used default PTK parameters as described in [31] and the
polynomial kernel of degree 3 on standard features.
Pipeline. We built the entire processing pipeline on top of the
UIMA framework.We included many off-the-shelf NLP tools wrap-
ping them as UIMA annotators. We use the Apache OpenNLP22

and Stanford CoreNLP [21] tools for sentence detection, tokeniza-
tion, POS-tagging and NE recognition; Illinois chunker [27], Stan-
ford CoreNLP Lemmatizer, and question class and focus classifiers
trained as in [31]. For dependency parsing we used Stanford depen-
dency parser (version 2.0.3) and UIMA wrappers provided by the
DKPro toolset [10] for the Mate [6] (v3.5), ClearNLP [7] (v2.0.2,

14http://trec.nist.gov/data/qamain.html
15https://catalog.ldc.upenn.edu/LDC2002T31
16We downloaded the distribution made available by [44] in
https://code.google.com/p/jacana/.

17In order to obtain results comparable to those in the previous
works experimeting on TREC13 [45, 40, 42], we used the same
evaluation setting as described in footnote 7 in [45]. In this setting
the gold judgment file contains 4 extra questions not covered by
the test set, thus resulting in lowering the upper bound of MAP and
MRR to 94.44 instead of 100

18http://www.mpi-inf.mpg.de/yago-naga/yago1_
yago2/download/yago2/yago2core_20120109.
rdfs.7z

19http://semanticweb.cs.vu.nl/lod/wn30/
20http://dbpedia.org/Downloads39
21http://disi.unitn.it/moschitti/Tree-Kernel.
htm

22https://opennlp.apache.org/index.html



Table 1: Comparison of different syntactic structures combined with vectors and basic relations
TREC QA 2002/2003 Trec13 Answerbag

MRR MAP P@1 MRR MAP MRR MAP P@1
BM25 28.02±2.94 21.90±1.67 18.17±3.79 n/a n/a 65.96 66.24 55.60
V 32.70±2.25 25.76±1.08 23.05±2.91 74.06 64.32 67.94 68.22 58.60
CH+V+FREL [31] 39.49 32.00 30.00 73.58 67.81 n/a n/a n/a
DT1+V+FREL [31] 38.05 31.00 28.39 n/a n/a n/a n/a n/a
CH+FREL 38.85±1.07 31.87±1.29 28.41±0.92 82.29 73.34 63.20 63.53 53.10
CH+V+FREL 41.51±1.65 33.54±1.35 32.20±1.90 81.30 72.65 69.90 70.07 60.80
DT1+V+FREL 41.73±1.71 33.55±1.60 32.44±1.99 78.47 70.56 69.33 69.52 60.20
DT2+V+FREL 42.75±2.43 34.05±2.18 33.66±2.97 78.45* 71.21* 68.97 69.17 59.50
DT3

Q

+DT2
A

+FREL 39.80±2.67 31.75±1.66 29.63±2.94 79.98 72.19 62.91 63.26 53.20
DT3

Q

+DT2
A

+V+FREL 43.22±2.57 34.37±1.78 34.39±2.91 80.57 73.40 69.51 69.70 60.20

Table 2: Comparing the impact of the preprocessing pipelines in
building structures on TREC QA 2002/2003 data.

Config MRR MAP P@1
CH+V+REL OpenNLP

pos

40.75±2.35 32.75±1.79 31.46±2.81
FREL Stanford

pos

41.51±1.65 33.54±1.35 32.20±1.90
CH

pr

+ OpenNLP
pos

39.81±1.80 32.28±0.98 29.51±2.22
V+REL+FREL Stanford

pos

41.21±1.36 33.40±1.84 32.32±1.93
DT3

Q

+ Stanford 43.22±2.57 34.37±1.78 34.39±2.91
DT2

A

Mate 41.31±2.22 33.38±1.30 31.46±3.44
+V+FREL ClearNLP 40.72±1.64 32.05±1.54 30.98±2.71

Malt 41.78±1.67 33.25±2.03 32.68±1.40

ontonotes model) and Malt [25] (v1.7.2, linear model) dependency
parsers. Moreover, we used annotators for building new sentence
representations starting from tools’ annotations. For example, we
generated annotations with shallow chunk-based structural presen-
tations using POS-tag and chunk annotation output by the previous
annotators in the pipeline.
Search engines. We retrieved answer passages for TREC QA 2002/
2003 from the AQUAINT corpus and Answerbag answer collec-
tion, respectively. We used Terrier23 along with the accurate BM25
scoring model. We retrieved 50 passages for each question.
Wikification tools. We used the Wikipedia Miner 24 (WM) [23]
and the Machine Linking (ML)25 tools. These return links along
with their confidences ranging from 0 to 1. To have high coverage
with Wikipedia links, we used all the links with confidence exceed-
ing 0.2 and 0.05 for WM and ML, respectively.
QA metrics. We used common QA metrics: Precision at rank
1 (P@1) i.e., the percentage of questions with a correct answer
ranked at the first position, and Mean Reciprocal Rank (MRR). We
also report the Mean Average Precision (MAP).
Significance tests. We used paired two-tailed t-test for evaluating
the statistical significance of the cross-validation experiments. ‡
and † indicates the significance levels of 0.05 and 0.1, respectively.

8.2 Comparing Shallow and Deep Structures
Table 126 reports the performance of the relational syntactic rep-

resentations enriched with question class, NE and question focus
information provided by the statistical classifiers.

Here, BM25 refers to the performance of the Terrier search en-
gine, V is a baseline reranker only employing the feature vectors
described in Section 8.1. In the following lines, CH, DT1, DT2,
DT3 correspond to the eponymous structures described in Section 4.
CH+V+REL+FREL and DT1+V+REL+FREL indicate the sys-
tems employing, CH and DT1 representations, respectively whereas

23http://terrier.org/
24http://sourceforge.net/projects/
wikipedia-miner/files/wikipedia-miner/
wikipedia-miner_1.1

25http://www.machinelinking.com/wp
26In [31], we reported MAP values rounded to decimals as 0.xx. As
we do not have more decimal digits for such results, we converted
them to xx.00.

+REL, +FREL indicate that the structures are linked with the REL
and FREL approaches (Sec. 4.1). DT3Q+DT2A means that ques-
tion and answer passage are represented by DT3 and DT2, respec-
tively. +V indicates that a feature vector is added to the tree repre-
sentation.

In our experiments on TREC 2002/2003, CH+V+FREL performs
comparably to DT1+V+FREL and is outperformed by the other de-
pendency structures. In our intuition, this new outcome may be due
to the performance of the dependency parser employed for prepro-
cessing [26].

This intuition motivated us to evaluate the impact of four dif-
ferent parsers for building DT3Q+DT2A. The results in Table 2
show that ClearNLP parser is outperformed by Mate, Malt and
Stanford, where the latter always obtains the best result. Addition-
ally, we compared the impact of using sentence splitters, tokenizers
and POS-taggers from two basic preprocessing pipelines, Stanford
CoreNLP (Stanfordpos) and OpenNLP (OpenNLPpos), on the final
performance of the simpler CH structure. The results show that
Stanfordpos outperforms OpenNLPpos.

8.3 Measuring the Impact of LD Semantics
In these experiments, we evaluated the accuracy achieved by the

baseline systems enriched with wikiREL (Section 6.2), and TM-
relations. First, we ran an evaluation of all possible LD sources
combinations with different TM-match knowledge techniques in
cross-validation on TREC 2002/2003 and then we ran the resulting
best systems on TREC13 and Answerbag.

8.3.1 TREC QA Answer Passage Reranking
We tested the impact of LD relations in structures using (i) basic

lexical relations, i.e., CH+V+REL, and (ii) the lexical and seman-
tic relations, i.e., CH+V+REL+FREL, described in Section 4.1.
For these experiments, we (i) performed 5-fold cross-validation
on TREC 2002/2003 and (ii) employed the preprocessing pipeline
based on OpenNLP sentence splitter, tokenizer, POS tagger and
Illinois chunker.

Tables 3 and 4 report the results using CH+V+REL and CH+V+
REL+FREL, respectively. Since wikiREL improves coverage, we
preferred to add it to all TM types of relations. Thus, after the dou-
ble line, the tables display the baselines (in bold) enriched (“+”)
with different models based on TMN , TMND , TMNF , TMNDF ,
i.e., different TM-encoding strategies (see Section 6). Addition-
ally, D, Y, W denote that DBpedia, YAGO and WordNet, respec-
tively, were used as the LD dataset, when detecting TM matches.
We use + to indicate a combination of several LD datasets. We
will reuse such notation in all the following tables. We evaluate
statistical significance of the results obtained when using TM as
compared to the results reported in the CH+V+REL+wikiREL and
CH+V+REL+FREL+wikiREL lines for tables 3 and 4.

The tables show that all the systems exploiting LD knowledge,
excluding those using DBpedia only, outperform the strong CH+V
+REL and CH+V+REL+FREL baselines. Note that CH+V+REL+



Table 3: Results in 5-fold cross-validation on TREC QA corpus, each
TM model is added to CH+V+REL+wikiREL

System MRR MAP P@1
CH+V+REL 36.82±2.68 30.08±1.63 26.34±2.17
CH+V+REL+wikiREL 39.17±1.29‡ 31.34±1.34‡ 28.66±1.43 ‡
+TM

N

:D 40.60±1.88 33.28±1.11‡ 31.10±2.99 †
+TM

N

:W 41.39±1.96 ‡ 33.43±1.15‡ 31.34±2.94
+TM

N

:W+D 40.85±1.52 ‡ 33.41±1.21‡ 30.37±2.34
+TM

N

:Y 40.71±2.07 33.27±2.53† 30.24±2.09‡
+TM

N

:Y+D 41.25±1.57‡ 33.78±1.92‡ 31.10±1.88 ‡
+TM

N

:Y+W 42.01±2.26 ‡ 34.38±2.39 ‡ 32.07±3.04 ‡
+TM

N

:Y+W+D 41.52±1.85‡ 33.78±1.80 ‡ 30.98±2.71‡
+TM

NF

:D 40.67±1.94† 33.46±1.28‡ 30.85±2.22 †
+TM

NF

:W 40.95±2.27 ‡ 33.27±1.37‡ 30.98±3.74
+TM

NF

:W+D 40.84±2.18 † 33.73±1.36‡ 30.73±3.04
+TM

NF

:Y 42.01±2.44 ‡ 34.38±2.39‡ 32.07±3.01 ‡
+TM

NF

:Y+D 41.32±1.70 † 34.32±1.79 ‡ 31.10±2.48 ‡
+TM

NF

:Y+W 41.69±1.66 ‡ 33.95±1.96 ‡ 31.10±2.44 ‡
+TM

NF

:Y+W+D 41.56±1.41‡ 34.41±1.80‡ 30.85±2.22 †
+TM

ND

:D 40.37±1.87 33.36±0.94‡ 30.37±2.17
+TM

ND

:W 41.13±2.14‡ 33.34±0.77‡ 30.73±2.75
+TM

ND

:W+D 41.28±1.03‡ 33.80±0.88‡ 30.73±0.82 ‡
+TM

ND

:Y 42.11±3.24 ‡ 34.41±2.19‡ 32.07±4.06 ‡
+TM

ND

:Y+D 42.28±2.01‡ 34.76±1.18‡ 32.44±1.99‡
+TM

ND

:Y+W 42.96±1.45‡ 34.68±1.49 33.05±2.04 ‡
+TM

ND

:Y+W+D 42.56±1.25 ‡ 34.78±1.11 ‡ 32.56±1.91‡
+TM

NDF

:D 40.35±1.72 † 33.42±1.06‡ 30.49±1.78 ‡
+TM

NDF

:W 40.98±1.96 33.25±0.58† 30.85±2.05
+TM

NDF

:W+D 41.37±1.05‡ 34.14±0.78‡ 31.34±1.40‡
+TM

NDF

:Y 42.02±2.38‡ 34.77±2.23‡ 32.07±2.78‡
+TM

NDF

:Y+D 42.07±2.40 ‡ 35.10±1.70 ‡ 32.44±2.91 ‡
+TM

NDF

:Y+W 43.12±1.44 ‡ 34.71±2.30 † 33.78±2.88 ‡
+TM

NDF

:Y+W+D 43.38±1.58‡ 35.27±1.61‡ 34.02±2.81‡
Severyn et al. [31] 39.49 32.00 30.00

wikiREL systems enriched with TM tags perform comparably to
CH+V+REL+FREL, i.e., using question and focus classifiers, and
in some cases even outperform it. Thus LD models can avoid the
use of training data and language/domain specific classifiers.

Additionally, the tables show that we typically obtain better re-
sults when using YAGO2 and/or WordNet. In our intuition this
is due to the fact that these resources are large-scale, have fine-
grained class taxonomy and contain many synonymous labels per
class/entity thus allowing us to have a good coverage with TM-
links. The DBpedia ontology that we employed in the D experi-
ments is more shallow and contains fewer labels for classes, there-
fore the amount of discovered TM matches is not always sufficient
for increasing performance. YAGO2 provides better coverage for
TM relations between entities and their classes, while WordNet
contains more relations between classes.27 Note that, we also used
WordNet in our experiments in [31] but we employed supersenses
whereas in this paper we use hypernymy relations. Moreover, we
used a different technique to incorporate semantic match into the
tree structures. This allowed our new models to relatively improve
the old ones by about 16%, e.g., 37.16 vs. 32.0 in MAP.

Next, using different TM-knowledge encoding strategies, i.e.,
TMN , TMND , TMNF , TMNDF , results in small performance vari-
ations. This means that encoding LD information is basically sim-
pler than what we thought. We further tested the impact of the dif-
ferent encoding strategies when using the Stanford parser. Table 5
reports results of the structures built by such parser and enriched
with LD, according to different TM encoding techniques.

Finally, the last three lines of Tab. 4 show our attempt to en-
code LD information in a feature vector, i.e., VL. This refers to
the number of TM matches between the Q and AP, for different
types of TM. It is basically the unstructured version of our LD
models. As it can be seen, V+VL only slightly improves V and

27We consider the WordNet synsets to be classes in the scope of our
experiments

Table 4: Results in 5-fold cross-validation on TREC QA corpus, all
models are build on top of CH+V+REL+FREL system

System MRR MAP P@1
CH+V+REL+FREL 40.50±2.35 33.07±1.75 31.46±2.42
CH+V+REL+
FREL+wikiREL 41.33±1.17 34.23±1.10 31.46±1.40

+TM
N

:D 40.80±1.01 34.43±1.04 30.37±1.90
+TM

N

:W 42.43±0.56 35.07±0.61 32.80±0.67
+TM

N

:W+D 42.37±1.12 35.46±1.15 32.44±2.64
+TM

N

:Y 43.28±1.91† 36.01±1.33† 33.90±2.75
+TM

N

:Y+D 42.39±1.83 35.21±1.42 32.93±3.14
+TM

N

:Y+W 43.98±1.08 ‡ 36.33±0.57‡ 35.24±1.46‡
+TM

N

:Y+W+D 43.13±1.38 35.62±0.98 33.66±2.77
+TM

NF

:D 41.43±0.70 35.08±0.85 31.22±1.09
+TM

NF

:W 42.37±0.98 35.10±0.95 32.56±1.76
+TM

NF

:W+D 43.08±0.83 36.24±1.36 33.54±1.29
+TM

NF

:Y 43.82±2.36 † 36.32±1.54‡ 34.88±3.35
+TM

NF

:Y+D 43.19±1.17 † 36.30±1.16† 33.90±1.86
+TM

NF

:Y+W 44.32±0.70‡ 36.49±0.82‡ 35.61±1.11‡
+TM

NF

:Y+W+D 43.79±0.73 ‡ 36.56±1.18† 34.88±1.69‡
+TM

ND

:D 41.58±1.02 35.23±0.95 † 31.46±1.59
+TM

ND

:W 42.19±1.39 34.94±0.65 32.32±1.36
+TM

ND

:W+D 42.37±1.16† 35.90±1.11† 32.44±2.71 †
+TM

ND

:Y 44.04±2.05 ‡ 36.47±1.18‡ 34.63±2.17‡
+TM

ND

:Y+D 43.77±2.02 † 36.55±1.35 † 34.27±2.42
+TM

ND

:Y+W 44.25±1.32 ‡ 36.71±0.37 ‡ 34.76±1.61 ‡
+TM

ND

:Y+W+D 43.91±1.01‡ 36.51±0.84 † 34.63±1.32 ‡
+TM

NDF

:D 41.56±1.10 35.12±1.05† 31.59±1.46
+TM

NDF

:W 41.97±0.96 34.75±0.73 31.71±1.14
+TM

NDF

:W+D 42.12±1.08 35.74±1.46 32.20±2.09
+TM

NDF

:Y 44.99±2.45 ‡ 37.16±1.69 ‡ 36.59±3.02 ‡
+TM

NDF

:Y+D 44.14±1.85 36.66±1.22 35.00±2.05
+TM

NDF

:Y+W 44.55±1.42 ‡ 37.01±1.21 ‡ 35.73±2.22 ‡
+TM

NDF

:Y+W+D 43.83±0.95 ‡ 36.73±1.29 † 34.51±1.96 †
V 32.67±1.74 26.08±0.83 22.68±2.67
V+VL 35.39±2.49 28.34±1.81 25.73±3.54
CH+V+VL+REL+FREL 41.36±2.17 34.04±1.19 31.46±2.81

CH+V+VL+REL+FREL is about 4 points absolute less than the
best model using LD in structures, i.e., +TMNDF . This confirms
that semantic knowledge requires to be used in syntactic structures.

Comparison with TREC challenge. An approximate (as we
used five-fold cross-validation) comparison can be attempted with
the results from TREC 2003 for the “best passages tasks” described
in TREC-overview [39]. Thanks to LD our system achieves an ac-
curacy (Precision@1) of 36.59, which would allow it to be ranked
3rd in the official evaluation, i.e., higher than MultiText-system (ac-
curacy=35.1) and below the systems of LCC and Singapore (68.5
and 41.9, respectively). However, such top two systems used many
handcrafted rules, resources and heuristics, which also prevent re-
searchers to replicate them. In contrast, we generated features au-
tomatically, we do not design rules, and all our technology is al-
ready off-the-shelf, except for some missing components that we
will make freely available to facilitate replicability of our results.

8.3.2 Answerbag
The first two lines of Table 6 report our chosen baselines whereas

the last six lines show the accuracy of the systems that typically ex-
hibited the best accuracy on our experiments on TREC QA 2002/2003
corpus. The relative improvement when using LD and Wikipedia is
lower. This is likely due to the fact that the textual overlap between
questions and answers on Answerbag is higher than that on TREC
QA 2002/2003, thus the generalization provided by our structures
is less important. Note, that we also experiment with DT1 struc-
ture built with OpenNLP pipeline and it is outperformed by the one
constructed using Stanford preprocessing tools (see Table 1).

8.3.3 TREC13: Sentence Reranking
Table 7 reports the accuracy of the baseline CH+V+REL+FREL,

along with the combinations with wikiREL and TM knowledge.
The results on the TREC13 data further confirm the usefulness of
LD-based TM knowledge, which allows us to obtain a statistically



Table 5: Syntactic structures using Stanford parser and LD
Model LD MRR MAP P@1
CH+V+REL+FREL + TM

N

:Y+W 43.12±2.70 35.56±2.12 33.05±4.08
+TM

ND

:Y+W 43.55±1.81 35.72±1.52 33.90±2.64
+TM

NF

:Y+W 43.54±1.74 36.22±1.16 33.78±2.31
+TM

NDF

:Y 42.57±1.67 35.91±1.94 32.20±2.45
DT1+V+REL+FREL +TM

NDF

:Y 42.98±1.32 35.47±0.62 32.68±2.09
DT2+V+REL+FREL +TM

NDF

:Y 43.32±2.24 35.96±1.94 33.17±3.49
DT3

Q

+DT2
A

+V+REL+FREL
+TM

NDF

:Y 43.77±1.79 36.14±1.40 34.15±1.83

Table 6: Experiments of LD on Answerbag data
Model MRR MAP P@1
CH+V+REL+FREL 69.29 69.50 60.00
DT1+V+REL+FREL 62.76 63.08 52.50
CH+V+REL+FREL+wikiREL 70.17 70.31 60.80
+TM

N

:Y+W 70.66 70.77 61.10
+TM

N

:Y 70.35 70.46 60.60
+TM

ND

:Y+W 70.62 70.76 61.10
+TM

NF

:Y+W 70.44 70.58 60.50
+TM

NDF

:Y 70.64 70.75 60.80

significant improvement of around 3.5 points in terms of MRR as
compared to the baseline CH+V+REL+FREL. The comparison of
our models with the state-of-the-art results, reported by Tab. 8,
shows that our kernel-based rerankers outperforms the very recent
best model, i.e., Wang and Nyberg (2015), by 2.17% absolute in
MRR and 1.31% in MAP. Moreover, when we add LD informa-
tion, the improvement in MAP increases to 2.73% absolute.

8.4 Efficiency
Computational complexity. The complexity of the type match

procedure for a short text pair, Tent and Tgen, described in Sec-
tion 5.2 is O(k ⇥ |Tgen| ⇥ |Tent|). |T | is the length of text T in
terms of words. k is a LD-dataset specific constant denoting the
maximal amount of generalizations per all uri-s corresponding to a
word. For example, in case of WordNet this would be the maximal
amount of hypernyms for all the senses of a given word.

Wikipedia annotation time. Wikipedia annotation time depends
on the algorithms used to perform wikification, tools and tech-
niques for Wikipedia data storage and retrieval, and hardware ca-
pacity. In our experiments we used (i) a local installation of Wikipedia
Miner (WM) on a DELL N5110 machine28 and a (ii) commercial
web-service optimized for fast text processing, ML, which we ac-
cess using REST API. We store preprocessed version of Wikipedia
to be used by WM 1.0 in a 5.5.17 MySQL database.

Table 9 provides information about the running time of Wikipedia
annotation on two randomly selected subsets of text pairs with dif-
ferent length. Size column reports number of Q/AP pairs processed,
Avg length reports their average length in words, and the two last
columns report the average time required to process one pair in sec-
onds (and total time required to process the full corpus in minutes
in parentheses). The speed exhibited by the ML service shows that
the methods relying on linking to Wikipedia are scalable for large
amounts of data given the efficient implementation of the wikifica-
tion tool.

Type data extraction time. We use Jena TDB 0.9.029 RDF
triple store to store local YAGO, WordNet and DBpedia data. Jena
TDB efficiency30 was evaluated on a number of benchmarks with

286GB RAM, four core Intel(R) Core(TM) i7-2630M CPU @
2.00GHz processor, 64-bit operating system, 640gb 2.5" Sata II
Hard Drive with 5400 RPM

29http://jena.apache.org/documentation/tdb/
index.html

30We installed Jena TDB on a server machine with
12Intel R�Xeon R�Processor X5670 processors, with 94GB RAM

Table 7: Results of CH+FREL plus the best LD models on TREC13
Model MAP MRR
CH+REL+FREL 72.65 81.30
CH+REL+FREL+wikiREL 72.99 80.37
+TM

N

:Y 74.07 81.10
+TM

NF

:Y 73.73 79.52
+TM

ND

:Y 74.05 80.19
+TM

NDF

:Y 72.94 79.78

Table 8: Previous work results on the TREC13.
Model MRR MAP
Wang et al. (2007)[42] 68.52 60.29
Heilman and Smith (2010)[14] 69.17 60.91
Wang and Manning (2010)[41] 69.51 59.51
Yao et al. (2013)[43] 74.77 63.07
Severyn and Moschitti (2013)[31] 75.20 68.29
Yih et al. (2013)[45] 77.00 70.92
Wang and Nyberg (2015) [40] 79.13 71.34
CH+FREL (this work) 81.30 72.65
CH+FREL+wikiREL+TMN :Y 81.10 74.07

results reported, for example, in [5]. We store YAGO2 and Word-
Net+DBpedia data in separate triple stores.

In our case, extracting all the generalizations of the URI, i.e.
sending a set of SPARQL queries to a triple store, took 18.22, 36.28
and 68.59 milliseconds for WordNet, YAGO and DBpedia, respec-
tively. In average, we extracted 32 type-type label pairs per anchor
from WordNet, 49 from YAGO and 26 from DBpedia.

Table 9: Wikipedia annotation time
Dataset Size Average Average (total) time

length ML MW
Sample1 1599 36.78 0.14s (3.6m) 2.84s (75.7m)
Sample2 1146 107.30 0.23s (4.3m) 9.02s (172.7m)

9. CONCLUSIONS
This paper proposes a study on syntactic structures enriched with

semantic information from statistical classifiers and knowledge from
LD for passage reranking. In particular, YAGO, DBpedia and Word-
Net are used to match constituents from QA pairs. Such matches
are used to enrich semantic structures. The experiments with TREC
QA and the above models also combining traditional feature vec-
tors and the improved relational structures greatly outperform a
strong IR baseline, i.e., BM25, by 101%, and previous state-of-
the-art reranking models, e.g., up to 16% in MAP. Differently from
previous work, our models can effectively use semantic knowledge
in statistical learning to rank methods. It should be stressed that our
experiments have shown that simply using semantic information as
features (even if extracted from a powerful resource as LD) does
not significantly improve BM25. It is really necessary to encode
semantic features in syntactic structures and then generate syntac-
tic/semantic relational patterns between question and answer pas-
sage (to be used as features in the reranker).

Our promising results open interesting future directions in de-
signing novel semantic structures and using innovative semantic
representations in learning algorithms for IR applications. Addi-
tionally, jointly using deep neural networks with our approach is an
interesting and promising research direction.
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