
Learning to Rank from Structures

in Hierarchical Text Classification

Qi Ju1, Alessandro Moschitti1, and Richard Johansson2

1 DISI, University of Trento, Italy
2 Department of Swedish, University of Gothenburg, Sweden
{qi,moschitti}@disi.unitn.it, richard.johansson@gu.se

Abstract. In this paper, we model learning to rank algorithms based
on structural dependencies in hierarchical multi-label text categorization
(TC). Our method uses the classification probability of the binary clas-
sifiers of a standard top-down approach to generate k-best hypotheses.
The latter are generated according to their global probability while at the
same time satisfy the structural constraints between father and children
nodes. The rank is then refined using Support Vector Machines and tree
kernels applied to a structural representation of hypotheses, i.e., a hier-
archy tree in which the outcome of binary one-vs-all classifiers is directly
marked in its nodes. Our extensive experiments on the whole Reuters
Corpus Volume 1 show that our models significantly improve over the
state of the art in TC, thanks to the use of structural dependecies.

1 Introduction

Hierarchical text categorization shows interesting real-world applications, e.g.,
Yahoo! Categories and Dmoz. These involve a large number of categories and
documents, making traditional multi-label classification methods, e.g., one-versus-
all, inadequate. To produce a sufficient classification accuracy in such conditions,
the structure of the hierarchy must be taken into account. This is not straightfor-
ward as hierarchical classifiers often impose a number of simplifying restrictions
on their models. In particular, category assignments are normally assumed to
be conditionally independent. The probability of a document d belonging to a
subcategory Ci of a category C is assumed to depend only on d and C, but not
on other subcategories of C, or any other categories in the hierarchy. If other
dependencies between categories are introduced, the maximization step becomes
computationally intractable.

Previous work has tackled the problem by introducing dependencies between
labels without exploiting hierarchical structures, e.g., SVM-struct in [26,9] op-
timized with respect to the output label subset and [10] learned meta-classifiers
by exploiting dependency features (between category labels). In contrast, [23]
exploited hierarchical dependencies (not just label dependencies) but the algo-
rithm was computationally expensive. Indeed, they could only experiment with
34 categories out of 103 of the Reuters Corpus Volume 1 collection (RCV1) [15]
and a small document subset of the entire corpus.

P. Serdyukov et al. (Eds.): ECIR 2013, LNCS 7814, pp. 183–194, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

184 Q. Ju, A. Moschitti, and R. Johansson

To our knowledge, our approach in [19] is the only one using a hierarchy struc-
ture on large data. We designed an efficient model based on a simple generator
of hypotheses and a reranking algorithm based on hierarchy structure features
from tree kernel spaces. This model improved the state of the art on the en-
tire RCV1. However, the generation of hypotheses did not take into account the
structure of the hierarchy. This means that many hypotheses could violate the
hierarchy constraints, providing the reranker with many wrong hypotheses (this
is a shortcoming as, in principle, such hypotheses can be filtered out). Addition-
ally, we only measured the accuracy with standard Micro-and Macro-average F1.
This does not guarantee that the model with the highest F1 produces the best
hierarchical classifications. For example, such measure does not consider that
mistaking a leaf node by a first level node is a much worse error than mistaking
a node for one of its siblings.

In this paper, we propose an efficient and more accurate reranker than in [19].
The new reranker is based on our new algorithm for the generation of the top k
category assignments. This satisfies the hierarchical constraints between different
node classifications during the generation by providing a more precise global
hypothesis probability. The better set of hypotheses is then reranked similarly to
what proposed in [19], i.e., Support Vector Machines (SVMs) using tree kernels
classify pairs of hypotheses represented with trees. The latter describe both
hierarchy and classification labels. Our algorithm along with our fast tree kernel
representation can be applied to large hierarchies. Note that there can be other
ways to impose hierarchical constrained, e.g., Conditional Random Fields [14],
but our reranker can be applied on top of any model: it can exploit any basic
classifier that provides prediction scores, provided that the latter are converted
into probabilities. We carried out experiments on the entire hierarchy (103 nodes
organized on 5 levels) of the well-known RCV1. As a first step, we evaluated the
accuracy of our reranker on a setting comparable with previous work in TC.
Then, we explore the accuracy and the efficiency of several reranking models
by showing that our rerankers consistently and significantly improve on the
traditional approaches to TC up to about 5 absolute percent points. Finally,
we also trained our reranker according to the Multi-label Graph-Induced Error
(MGIE) [27], which is a standard hierarchal measure. The results show that
our reranker outperforms our previous results and can be easily optimized to
improve on any structural measure.

In the remainder of this paper, Section 2 introduces preliminaries for the
hypothesis generation algorithm, which is then presented in Section 3. Section
4 illustrates our reranking approach based on tree kernels, Section 5 reports on
our experiments, and finally Section 6 derives the conclusions.

2 Global Classification Hypotheses from Binary Decisions

The idea of the paper is to build efficient models for hierarchical classification
using global dependencies. For this purpose, we use reranking models, which
encode global information. These necessitate of a set of initial hypotheses, which

Learning to Rank from Structures in Hierarchical Text Classification 185

are typically generated by local classifiers. In our study, we used n one-vs-all
binary classifiers, associated with the n different nodes of the hierarchy. In the
following sections, we show a hierarchical algorithm in which the structure im-
poses constrains on the feasibility of the hypotheses.

2.1 Structural Generation from a Hierarchy

The generation process becomes more complex when the hierarchy is taken into
account. Indeed, if d belongs to a category C, then it also implicitly belongs to
all supercategories of C, including the top category T . We consider tree-shaped
hierarchies and leave the extension to general DAG-shaped category systems to
future work. To take into consideration a tree structure, we base our model on
the computation of two types of probabilities. Firstly, for a given document d,
and a category C with subcategories C1, . . . , Cn, we define the stop probability
as the probability of ”stopping” at C, i.e., that d does not belong to any of the
subcategories of C: ps(C) = P (d /∈ C1 . . . d /∈ Cn|d ∈ C). Secondly, in the case
where we know that at least one subcategory

B C

BA BB CA CB

T

A

AA AB

Fig. 1. Example of a hierarchy

has been selected, we can compute the prob-
abilities of selecting a particular subcategory:
pCi(C) = P (d ∈ Ci|d ∈ C(d ∈ C1 ∨ . . . ∨ d ∈
Cn)), i ∈ {1, . . . , n}. At this stage, we as-
sume conditional independence between the
subcategories, so the probability will depend
only on the document and the supercategory.
These probabilities can be used to compute the probability of a complete assign-
ment of categories to a document. To exemplify, consider the hierarchy in Figure
1. To compute the probability of a document d belonging to the categories AB
and C (and then also implicitly to T and A) but not to AA, B, CA, or CB, we
decompose the probability using the above-mentioned conditional probabilities:
(1−ps(T)) ·pA(T) ·(1−pB(T)) ·pC(T) ·(1−ps(A)) ·(1−pAA(A)) ·pAB(A) ·ps(C).
The next section presents hypothesis generation exploiting this decomposition.

3 Generation the Top k Classifications in a Hierarchy

The number of category assignments is exponential in the number of categories,
so for any nontrivial hierarchy a brute-force search to find the best hypothesis is
not applicable. However, the independence assumptions ensure that the search
space is decomposable so that the best assignment – and the k best assignments
– can be found quickly. Similar to the fastest k-best algorithm for natural lan-
guage parsing [11], our algorithm proceeds in two steps: We first find the best
assignment, and then we construct the k-best list by incremental modifications.

3.1 Generation of the Top Hypothesis

We first describe the function Top1 that finds the category assignment having
the highest probability. The algorithm works top-down, and due to the condi-
tional independence assumptions, we can find optimal assignments in subtrees

186 Q. Ju, A. Moschitti, and R. Johansson

Algorithm 1. Generation of the top hypothesis

function Top1(C)
// Returns the top hypothesis and its probability
if ps(C) ≥ 0.5

return 〈{C}, ps(C)〉
〈S, P 〉 ← MaxSubcats(C)
if S = ∅
〈S,P 〉 ← MaxOneSubcat(C,P)

if ps(C) ≥ P
return 〈{C}, ps(C)〉

else
return 〈{C} ∪ S,P 〉

function MaxOneSubcat(C,P)
qmin ←∞
for each subcategory Ci ∈ Sub(C)
〈Si, Pi〉 ← Top1(Ci)
qi ← (1− pCi

(C))/(Pi · pCi
(C))

if qi < qmin

qmin ← qi, Smin ← Si

return 〈Smin, P/qmin〉

function MaxSubcats(C)
S ← ∅, P ← 1− ps(C)
for each subcategory Ci ∈ Sub(C)

if pCi
(C) ≤ 0.5

P ← P · (1 − pCi
(C))

else
〈Si, Pi〉 ← Top1(Ci)
if pCi

(C) · Pi > (1− pCi
(C))

P ← P · pCi
(C) · Pi

S ← S ∪ Si

else
P ← P · (1− pCi

(C))
return 〈S, P 〉

Algorithm 2. Generation of the top k hypotheses

function TopK(C, k)
// Returns the top k hypotheses and their

probabilities
H ← ∅
q ← empty priority queue
Enqueue(q,Top1(C))
while |H| < k and q is nonempty
〈S,P 〉 ← Dequeue(q)
H ← H ∪ {〈S, P 〉}
if |H| < k

for each h ∈ Succs(C,P, S)
Enqueue(q, h)

return H

function Succs(C,P, S)
// Returns the set of modifications of

the hypothesis S
if C has no subcategory

return ∅
H ← ∅
if S �= {C}

Stop(C,P, S,H)
EnableEachSubcat(C,P, S,H)
DisableEachSubcat(C,P, S,H)
SubcatSuccs(C,P, S,H)

else
Unstop(C,P, S,H)

return H

independently of each other. At each node, we check whether the stop prob-
ability is higher than the probability of enabling at least one subcategory; the
probability of each subcategory is computed recursively. To cut the search space,
the algorithm exploits the fact that if the stop probability ps is greater than 0.5,
the probability of entering any subcategory, (1 − ps) · pCi , is guaranteed to be
less than 0.5.1

Algorithm 1 shows the pseudocode. Here, the function Sub returns the sub-
classes of a given class C. While the algorithm is straightforward; note that the
optimal assignment is not necessarily what we would get by a greedy algorithm
selecting the highest probability assignment at each choice point. In practice, the
implementation will cache the probabilities and maximal assignments to avoid re-
dundant recomputations. For brevity, we omit the caching from the pseudocode.

1 The algorithm can be rewritten without this trick to generalize to non probabilistic
scores.

Learning to Rank from Structures in Hierarchical Text Classification 187

Algorithm 3. One-step modifications of a hypothesis

procedure SubcatSuccs(C,P, S,H)
for each subcategory Ci ∈ Sub(C)

if Ci ∈ S
Pi ← ProbSubcats(S,Ci)
Si ← S ∩ Subtree(Ci)
for each 〈Ss, Ps〉 ∈ Succs(Ci, Pi, Si)

H ← H ∪ {〈(S \ Si) ∪ Ss, P/Pi · Ps〉}

procedure Stop(C,P, S,H)
P ′ ← P · ps(C)/(1− ps(C))
for each subcategory Ci ∈ Sub(C)

if Ci ∈ S
P ′ ← P ′/pCi

(C)
P ′ ← P ′/ProbSubcats(S,Ci)

else
P ′ ← P ′/(1− pCi

(C))
H ← H ∪ {〈{C}, P ′〉}

procedure Unstop(C,P, S,H)
〈Ss, Ps〉 ← MaxSubcats(C)
if Ss = ∅
〈Ss, Ps〉 ← MaxOneSubcat(C,P)

P ′ ← P · (1− ps(C)) · Ps/ps(C)
H ← H ∪ {〈S ∪ Ss, P

′〉}

procedure EnableEachSubcat(C,P, S,H)
for each subcategory Ci ∈ Sub(C)

if Ci /∈ S
〈Si, Pi〉 ← Top1(Ci)
P ′ ← P · pCi

(C) · Pi/(1− pCi
(C))

H ← H ∪ {〈S ∪ Si, P
′〉}

procedure DisableEachSubcat(C,P, S,H)
for each subcategory Ci ∈ Sub(C)

if Ci ∈ S
P ′ ← P · (1− pCi

(C))
P ′ ← P ′/pCi

(C)/ProbSubcats(S,Ci)
S′ ← S \ Subtree(Ci)
if S′ �= {C}

H ← H ∪ {〈S′, P ′〉}
else if P ′ ≥ P

EnableEachSubcat(C,P ′, S′, H)

3.2 Hypothesis Expansion

The algorithm TopK to generate the k top hypotheses (Algorithm 2) relies on
the fact that conditional independence between siblings ensure that the search
space is monotonic. The hypothesis at position i in the list of hypotheses is
then a one-step modification of one of the first i − 1 hypotheses. To generate k
hypotheses, we thus start with the most probable one and put it into a priority
queue ordered by probability. Until we have found k hypotheses, we pop the
front item and put it into the output list. We then apply the function Succs
to find all one-step modifications of the item, and we add them all back to the
queue.

The Succs function applies the following one-step modification operations:
SubcatSuccs, which recursively computes a one-step modification of every en-
abled subcategory; Stop, which changes an assignment with subcategories to a
stop; Unstop, which enables at least one subcategory of an assignment without
subcategories; EnableEachSubcat, which generates multiple hypotheses by
enabling every disabled subcategory; and finally DisableEachSubcat, which
conversely disables every enabled subcategory. The pseudocode for the modifica-
tion operations is shown in Algorithm 3. The pseudocode uses two auxiliary func-
tions: Subtree(C), which returns the set of categories that are subcategories of
C, and ProbSubcats, which returns the (previously computed) probability of
an assignment of a set of subcategories. Again, the pseudocode omits possible
optimizations, such as ignoring assignments that have already been processed.

188 Q. Ju, A. Moschitti, and R. Johansson

M132

M11 M12 M13 M14

M143 M142 M141

MCAT

M131

Fig. 2. A subhierarchy of Reuters

-M132

M11 -M12 M13 M14

 M143 -M142 -M141

MCAT

-M131

Fig. 3. A tree representing a category
assignment hypothesis for the subhier-
archy in Fig. 2

3.3 Efficiency of the Hypothesis Set Generation

The complexity of the algorithm is O(ks log(ks)) where s is the maximal number
of modified items generated by the Succs function, since the complexity of the
Enqueue operation is logarithmic in a standard priority queue. A non-tight
upper bound on s is 2N , where N is the number of nodes in the hierarchy, but
this is of limited interest: in practice, the number of modified items will be much
smaller, and depends on parameters such as the shape of the hierarchy and the
number of enabled subcategories in an assignment. However, it is clear that the
algorithm is able to handle very large hierarchies even in the worst case.

The bottleneck in practice will typically be the call to the probability estima-
tion procedure, and we note that the worst case – for 1-best as well as k-best
generation – occurs when we have to estimate all probabilities in the hierarchy.
The number of estimations in a hierarchy of N nodes is at most N − 1 stop
probabilities and N − 1 subcategory probabilities; note that these two worst-
case numbers do not occur at the same time. However, since we generate the
probabilities only when we need them, the number of estimations will typically
be much smaller in practice. How much of the hierarchy we actually need to
explore will of course depend on the particular probabilities.

4 Structural Reranker for Hierarchical Classification

In this section we provide a representation from which the dependencies between
the different nodes of the hierarchy can be learned. As an example let us con-
sider the Reuters categorization scheme. Figure 2 shows a subhierarchy of the
Markets (MCAT) category and its subcategories: Equity Markets (M11), Bond
Markets (M12), Money Markets (M13) and Commodity Markets (M14). These
also have subcategories: Interbank Markets (M131), Forex Markets (M132), Soft
Commodities (M141), Metals Trading (M142) and Energy Markets (M143).

Representing such hierarchy and the dependencies between their nodes in a
learning algorithm is not a trivial matter. Possible features are node subsets
of the hierarchy but: (i) their exhaustive generation produces an exponential
number of features, which is computationally infeasible; and (ii) the node order
as well as ancestor and sibling relations are lost. Since, to our knowledge, no
previous work has already addressed the TC hierarchy reranking, we may only

Learning to Rank from Structures in Hierarchical Text Classification 189

M14

-M143 -M142 -M141 -M132

M13

-M131 M11 -M12 M13 M14

MCAT

M11

 MCAT

-M132

 M13

-M131

M13

MCAT

-M131

MCAT

-M142

-M132

 M13 M14

-M142 -M141
M11 -M12 M13

M13

-M132

M14

 M143 M14

MCAT

MCAT

MCAT

Fig. 4. Some tree fragments of the hypothesis in Fig. 3

start exploring some reasonable features provided for other structured output
tasks. For example, trigrams and bigrams in parse-tree reranking [4].

However, even in such cases, we have too many options to explore. For exam-
ple, which node pairs should the path be extracted from? Which nodes should
be part of the n-grams? We found much simpler to employ tree kernels for auto-
matically generating all possible features (hierarchy fragments) in a way similar
to parse tree reranking [5]. In addition to a tree representation, the input of
tree kernels must also take into consideration the categories assigned to a given
document. For this purpose, we mark the negative assignments of the current
hypothesis in the node labels with “-”, e.g., -M142 means that the document
was not classified in Metals Trading. For example, Figure 3 shows the represen-
tation of a classification hypothesis consisting in assigning the target document
to the categories MCAT, M11, M13, M14 and M143. By applying the partial
tree kernel (PTK) [18] to such labeled tree all possible dependency features are
generated. For example, Fig. 4 shows some of the tree fragments (features from
the hypothesis of Fig. 3, encoding label dependencies).

5 Experiments

We show that several reranking models based on tree kernels can improve the
state of the art in TC. For this purpose, we experimented with RCV1, Lewis et
al.’s setting [15], by measuring the accuracy of different models according to it
on the Lewis’ split. We also optimized our ranker for MGIE and measured the
models accuracy according to it.

5.1 Setup

We used the full hierarchy of Reuters Volume 1 (RCV1)2 TC corpus. To com-
pare with previous work we considered, the Lewis’ split [15], which includes
23,149 news for training and 781,265 for testing. The training sets are used for
learning the binary classifiers needed to build the multiclass-classifier (MCC).
We used the state-of-the-art method used by [15] for RCV1, i.e.,: SVMs with
the default parameters (trade-off and cost factor = 1), linear kernel, normalized
vectors, stemmed bag-of-words representation, log(TF + 1) × IDF weighting
scheme and stop list3. We used the LIBSVM4 implementation, which provides

2 trec.nist.gov/data/reuters/reuters.html
3 We have just a small difference in the number of tokens, i.e., 51,002 vs. 47,219 but
this is both not critical and rarely achievable (diverse stop lists or tokenizers).

4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

trec.nist.gov/data/reuters/reuters.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

190 Q. Ju, A. Moschitti, and R. Johansson

Table 1. Comparison between our rankers on the entire Topic hierarchy of RCV1
exactly using Lewis’ split and data (Lewis’ model maximizing Micro-F1 is reported).

F1
baseline our Rerankers

Lewis, flat Ours, flat Ours, hier SeqRR FRR HRR
Micro-F1 0.816 0.815 0.819 0.828 0.849 0.855
Macro-F1 0.567 0.566 0.578 0.590 0.615 0.634

a probabilistic output of the classification function. The classifiers are combined
using the one-vs.-all approach, which is also state of the art as argued in [22].
Since the task requires to assign multiple labels, we simply collect the decisions
of the n classifiers: this constitutes our MCC baseline.

Regarding the reranker, we divided the training set in two chunks of data:
Train1 and Train2. The binary classifiers are trained on Train1 and tested on
Train2 (and vice versa) to generate the hypotheses on Train2 (Train1). The union
of the two sets constitutes the training data for the reranker. We implemented
three rerankers: flat RR (FRR), using the simple flat hypothesis generation
(see, e.g., [19]) and the representation type described in Fig. 3; hierarchical RR
(HRR) using the hierarchical hypothesis generation (see Sec. 2) and the same
representation of FRR; and SeqRR, which is a sequence kernel applied to the
sequence of labels in a hypothesis, lexicographically ordered, e.g., we associated
the hypothesis in Fig. 3 with the following sequence: 〈M11, -M12, M13, -M131,
-M132, M14, -M141, -M142, M143, MCAT〉.

The rerankers are based on SVMs and the Preference Kernel (PK) [12] built
on top of PTK [18] or a sequence kernel. The latter is applied to the tree-
structured hypotheses. We also add a linear kernel to PK , which is applied to
unidimensional vectors containing the probability of the hypothesis (computed as
explained in Sec. 2). We trained the rerankers using SVM-light-TK5, a structural
kernel toolkit based on SVM-light [12], which allows for using PTK on pairs
of trees and combining them with kernel-based vectors. Again we use default
parameters to facilitate replicability and preserve generality. In all experiments,
if not mentioned, always 8 hypotheses are used. All the performance figures are
provided by means of Micro- and Macro-Average F1, evaluated from our test
data over all 103 categories. Finally, we assessed the statistical significance of
our results by using the model described in [29] and implemented in [20].

5.2 Classification Accuracy on Whole Reuters

In the first experiments, we used the Lewis’ split. The results are reported in
Table 1, whose columns have the following meaning: (i) Lewis’ flat refers to the
result achieved in Lewis et al. paper (the best Micro-F1 that they achieved);
(ii) Ours, flat is our reimplementation of the Lewis et al. MCC, i.e., a one-
vs-all multi-classifier using the same Lewis’ setting; (iii) Hier goes beyond the

5 disi.unitn.it/moschitti/Tree-Kernel.htm

disi.unitn.it/moschitti/Tree-Kernel.htm

Learning to Rank from Structures in Hierarchical Text Classification 191

flat model as it is a top down algorithm so already exploiting the classification
hierarchy; (vi) FRR and HRR are our kernel-based reranking models applied
to hypotheses generated with a flat or structural algorithm; and SeqRR is a
sequence kernel reranking “flat generated” hypotheses.

Our flat MCC achieved a Micro-F1 of 81.5, which basically matches the 81.6
reported in [15]. The top down model slightly improves the flat models, i.e.,
81.9-81.5=0.4. This is significant with p=10−5 (please consider that the test set
contains about 800k examples). When FRR is used on top of the baseline, we
improved it by 3.4 absolute percent points (significant at p=10−5), i.e., 84.9-
81.5=3.4. The hierarchical generation of hypotheses seems to be beneficial as we
obtain another statistical significant delta of 0.6 (significant at p=10−5). The
improvement on the Macro-average follows a similar pattern.

The SeqRR, only relying on label subset features, improves the baselines, i.e.,
flat and top down models, but it is outperformed by FRR, which exploits hier-
archical structural dependencies, i.e., the above feature but within a structure.

Very interestingly, HRR generates better hypotheses as the reranker using the
same features of FRR can achieve a slightly better accuracy (e.g., 0.855 - 0.849
= +0.6%, statistical significant result).

5.3 Discussion and Related Work

Ideally a comparison with other hierarchical models would be needed to better
assess the benefit of our approach. This is not always simple as not all previous
work follows the standard training/test split of RCV1. Moreover, previous mod-
els tend to be inefficient and this leads to experimentation with only Reuters
subparts. For example, the work in [23] is very close to ours. They directly en-
coded global dependencies in a gradient descendent learning approach. Their
approach is less efficient than ours so they could experiment with only CCAT
subhierarchy of RCV1, which only contains 34 nodes, achieving lower accuracy
than ours. Other relevant work such as [17] and [8] used a rather different dataset
and a different idea of dependencies based on feature distributions over the linked
categories. In particular, early work on automated hierarchical text categoriza-
tion, e.g., [8,16,13], simply approached the problem in a top down fashion by
recursively creating multi-classifiers for each individual node. This approach is
one of the baselines we compare with. [1] defined an algorithm called Refined
Experts, which propagates the lower-level category classification up through the
hierarchy before applying top-down classification, which thus refines the first
classification decisions. This model is obviously generalized by our reranker,
which indeed refines the first pass classification of local classifiers, exploiting the
classification of the entire structure. [6] used a Bayesian aggregator on the result
of the individual binary classifiers, thus also this is generalized by our approach.
[28] used a search engine to refine the set of category candidates. This approach
works well for a huge number of categories but of course the pre-selection it
applies introduces some noise.

192 Q. Ju, A. Moschitti, and R. Johansson

Table 2. Oracle performance accord-
ing to the number of hypotheses

k
Flat Generation Hierarchical Generation

Micro-F1 Macro-F1 Micro-F1 Macro-F1

1 0.640 0.408 0.640 0.408
2 0.758 0.504 0.771 0.538
4 0.821 0.566 0.835 0.603
8 0.858 0.610 0.869 0.620
16 0.898 0.658 0.917 0.710

Table 3. Hierarchical TC models measured
by the Multi-label Graph-Induced Error,
using max distant equal to 5 and 7

F1
RCV1-v2

baseline flatSVM HierSVM FRR HRR
max = 5 4.462 1.343 1.322 1.036 0.974
max = 7 5.538 1.824 1.794 1.360 1.234

The work on SVM-struct [26,9] and meta-classifier [10] does not exploit hier-
archical dependencies but it can be interesting for a comparison. For this pur-
pose, we implemented the sequence kernel model (SeqRR), which completely
subsumes the model in [10] since it generates a superset of the meta-features
used in such work. It also approximates [26] as it uses the same subset features
of SVM-struct but of course the search space of the latter is far larger than the
best hypotheses we generate. Anyhow, according to Table 1, SeqRR improves
on the baseline but it is also outperformed by our hierarchal rerankers. [2] used
discriminant functions to encode dependencies and to jointly learn a global loss
over the hierarchy. Similar online methods were proposed in [7,3]. Again, our
reranker approach produces better features and it is in general more efficient.

On a different research line, hierarchical shrinkage in [21,17] estimates param-
eters in Näıve Bayes classifiers considering the path from the root to the leaf
node. A similar idea is presented in [24], where the path above is encoded in
multinomial logistic models accounting for Bayesian priors. These methods are
generalized by all possible substructures generated by our approach. In [30], the
authors enforced each node of the hierarchy to be orthogonal to its ancestors as
much as possible in additional to minimizing the loss at individual nodes. [25]
presents a survey of hierarchical classification methods.

Finally, our approach has high potential as: (i) it is very efficient since the
reranker is constituted by only one binary classifier using efficient tree kernels.
For lack of space we do not report our running time study, which shows that
thousands of hypotheses can be classified in few seconds. (ii) There is a large
margin of improvement for our rerankers as shown in Table 2. It reports the
oracle performance with respect to the increasing number of hypotheses (using
a RCV1 subset). Oracle accuracy corresponds to the result we would get if we
were able to always select the best hypothesis with our reranker. The results also
show that the quality of the hierarchically generated hypotheses is better than
those generated by the flat method.

5.4 Multi-label Graph-Induced Error

We also demonstrate that our approach is effective for optimizing hierarchical
classification by using a hierarchical measure, i.e., a measure that takes into
account the different degrees of mistakes. For example, assigning a category to
a document, which is sibling of the correct one is less critical than assigning a
much more distant node of the hierarchy. The Multi-label Graph-Induced Error

Learning to Rank from Structures in Hierarchical Text Classification 193

(MGIE) [27] considers the distances between true positives, false positives and
false negatives by also limiting this with a maximum distance.

In our experiments, we set the max distance to five and seven. The results are
shown in Table 3. The baseline is computed by assigning categories according
to their occurrence probability. We note that flatSVM (one-vs-all) is slightly
improved by using a top-down approach. The flat reranker, FRR, improves on
the previous models and the HRR model exploiting better initial structural
hypotheses improves on FRR, suggesting that our rerankers can be tuned up on
any measure, especially the hierarchical ones.

6 Conclusions

In this paper, we have described several models for reranking the output of an
MCC. We have defined an algorithm for structural hypothesis generation along
with a reranker based on structural kernels. Our models can learn to reorder a
set of ranked hypotheses based on complex statistical dependencies. It should
be noted that this algorithm is based on a simple binary classifier that can
efficiently select the best hypothesis. We have seen a consistent improvement
over state-of-the-art TC models. Most importantly, our approach (i) is rather
general, (ii) can be applied to several other problems or domains and (iii) can
be optimized according to several measure, e.g., MGIE. Finally, in short-term
future, we would like to compare with other machine learning models and more
interestingly to experiment with large-scale corpora, e.g., Dmoz.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable and committed work. This research has been partially supported by
the EC’s Seventh Framework Programme (FP7/2007-2013) under the grants
#247758: EternalS – Trustworthy Eternal Systems via Evolving Software,
Data and Knowledge, and #288024: LiMoSINe – Linguistically Motivated Se-
mantic aggregation engiNes.

References

1. Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large tax-
onomies. In: SIGIR (2009)

2. Cai, L., Hofmann, T.: Hierarchical document categorization with support vector
machines. In: CIKM (2004)

3. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical
classification. JMLR (2006)

4. Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and MaxEnt discrimina-
tive reranking. In: ACL (2005)

5. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In: ACL (2002)

6. DeCoro, C., Barutcuoglu, Z., Fiebrink, R.: Bayesian aggregation for hierarchical
genre classification. In: International Symposium on Information Retrieval (2007)

194 Q. Ju, A. Moschitti, and R. Johansson

7. Dekel, O., Keshet, J., Singer, Y.: Large margin hierarchical classification. In: ICML
(2004)

8. Dumais, S.T., Chen, H.: Hierarchical classification of web content. In: SIGIR (2000)
9. Finley, T., Joachims, T.: Parameter learning for loopy markov random fields with

structural support vector machines. In: ICML Workshop (2007)
10. Gopal, S., Yang, Y.: Multilabel classification with meta-level features. In: SIGIR

(2010)
11. Huang, L., Chiang, D.: Better k-best parsing. In: IWPT Workshop (2005)
12. Joachims, T.: Making large-scale SVM learning practical. Advances in Kernel

Methods – Support Vector Learning (1999)
13. Koller, D., Sahami, M.: Hierarchically classifying documents using very few words.

In: ICML (1997)
14. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data. In: ICML (2001)
15. Lewis, D.D., Yang, Y., Rose, T., Li, F.: Rcv1: A new benchmark collection for text

categorization research. JMLR (2004)
16. Liu, T.Y., Yang, Y., Wan, H., Zeng, H.J., Chen, Z., Ma, W.Y.: Support vector

machines classification with a very large-scale taxonomy. SIGKDD Explorations
(2005)

17. McCallum, A., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classifica-
tion by shrinkage in a hierarchy of classes. In: ICML (1998)

18. Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syn-
tactic Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006.
LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

19. Moschitti, A., Ju, Q., Johansson, R.: Modeling topic dependencies in hierarchical
text categorization. In: ACL (2012)

20. Padó, S.: User’s guide to sigf: Significance testing by approximate randomisation
(2006)

21. Punera, K., Ghosh, J.: Enhanced hierarchical classification via isotonic smoothing.
In: WWW (2008)

22. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. JMLR (2004)
23. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of

hierarchical multilabel classification models. JMLR (2006)
24. Shahbaba, B., Neal, R.M.: Improving classification when a class hierarchy is avail-

able using a hierarchy-based prior. Tech. rep., Bayesian Analysis (2005)
25. Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different

application domains. In: DMKD (2011)
26. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine

learning for interdependent and structured output spaces. In: ICML (2004)
27. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label clas-

sification. In: TKDE (2011)
28. Xue, G.R., Xing, D., Yang, Q., Yu, Y.: Deep classification in large-scale text hier-

archies. In: SIGIR (2008)
29. Yeh, A.S.: More accurate tests for the statistical significance of result differences.

In: COLING (2000)
30. Zhou, D., Xiao, L., Wu, M.: Hierarchical classification via orthogonal transfer. In:

ICML (2011)

	Learning to Rank from Structures in Hierarchical Text Classification
	Introduction
	Global Classification Hypotheses from Binary Decisions
	Structural Generation from a Hierarchy

	Generation the Top k Classifications in a Hierarchy
	Generation of the Top Hypothesis
	Hypothesis Expansion
	Efficiency of the Hypothesis Set Generation

	Structural Reranker for Hierarchical Classification
	Experiments
	Setup
	Classification Accuracy on Whole Reuters
	Discussion and Related Work
	Multi-label Graph-Induced Error

	Conclusions

