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ABSTRACT be adapted to specific dialog domains. According to this

Current Spoken Language Understanding technology is basg&ra¢gm, protqtyplpal sﬂgaﬂonsfr:(ames) and predlf:ates
on a simple concept annotation of word sequences, where tI‘?é(OK'ng thege sﬂugﬂ_onskeéqcal un_|t3_ are annotated in the
interdependencies between concepts and their compcaditiorf:ext along with their involved parn_mpantﬁz{lme glemen)s

semantics are neglected. This prevents an effective handli or example, the sententiawould like to buy an insurance

of language phenomena, with a consequential limitation oﬁOI'qy” wil evpke thg Q)MMERC.F_SCENA.RIOfra.me where
the design of more complex dialog systems. uyis the lexical unit (or predicate) whileand insurance
In this paper, we argue that shallow semantic representasio policy are the BIYER and .the ®@obs frame elements, i.e.
formulated in the Berkeley FrameNet Project may be usefutlhe arguments of the predicate.
to improve the capability of managing more complex dialogs.  The semantic model proposed in FrameNet is well founded
To prove this, the first step is to show that a FrameNet parseit formal level [2]. In addition, nearly 800 frames and more
of sufficient accuracy can be designed for conversationahan 4,000 frame-dependent concepts have been already iden
speech. We show that exploiting a small set of FrameNetified and described. A wide English corpus of manually
based manual annotations, it is possible to design an sfiect annotated examples is available as well, such that sugervis
semantic parser. Our experiments on an Italian spokenglialanachine learning can be applied to automatize the frame an-
corpus, created within the LUNA project, show that our ap-notation process. Since this technology is very recengst h
proach is able to automatically annotate unseen dialogturmot been used yet in any spoken dialog system. The first step
with a high accuracy. to make it possible is to design an automatic FrameNet-based
Index Terms— Spoken Dialog Systems, Computational labeler able to work on conversational speech.

Semantics, Learning Models In this paper, we face the problem of automatically per-

1. INTRODUCTION forming the_above analys_,is over speech transcriptions from
real-world dialogs. In particular, we present a novel appto
In recent years, commercial services based on spoken dibased on Support Vector Machines (SVMs), Tree Kernels and
log systems have consistently increased both in number arttame Semantics. Our technique is language independent and
application scenarios. Their main limitation relates t@& | achieves state-of-the-art results in dealing with sevital-
capability of handling language variability and of perfangy  sands of concepts defined within hundreds of different seman
conceptual analysis over speech transcriptions. Indéed, ttic contexts (frames). Our system can be trained on any cor-
current Spoken Language Understanding (SLU) technologpus which just includes plain text and frame-based semantic
is based on a simple concept annotation of word sequencesnotation. Although we deeply exploit syntax, it is not re-
where the interdependencies between concepts and their coquired in principle, since we can robustly rely on automatic
positional semantics are not even attempted. syntactic analysis made by an off-the-shelf analyzer lie t
Although Natural Language Understanding approache€harniak’s parser [3]. Since the proposed approach isinher
are hardly suitable for real applications, shallow sentanti ently supervised, we are particularly interested in tgstia
methods devised in computational linguistics research agportability on languages with minor availability of rescas
pear promising to tackle the above mentioned tasks. Ththan English. Actually, several efforts to develop anredat
Berkeley FrameNet Project [1] proposes semantic modelsrameNet-like databases in other languages are currently i
and resources for open domain semantic analysis which cgmogress, for example in German [4] and Italian [5]. In this
This work has been partially funded by the European Comuorissi Work’ we report_on successful experiments performed on ltal
LUNA project (contract no. 33549), and by the Marie Curie &liance Grant 12N, 0N the basis of a reasonably small amount of annotated
for the ADAMACH project (contract no. 022593). data, which is drawn from the spoken dialog corpus being de-




veloped within the LUNA EU Projeét The first two stages can be carried out in several ways (de-
The rest of the paper is organized as follows. Section pending on the application), which include heuristics base

introduces Frame Semantics and our automatic analysis techn FrameNet lexical units found in the text, or traditional s

nigue, Section 3 presents the dataset, and Section 4 descrilpervised multi-classification approaches. BD is typicaby-

the experiment setting, the achieved results, and drawfs the ried out as a binary classification problem, where the classi

nal conclusions. fication instances are the nodes of the syntactic parse tree o
the considered sentence (or dialog turn). Indeed, predarat
2. AUTOMATIC ANNOTATION guments, according to some linguistic theories, are umiNypc
OF FRAME SEMANTICS associated with syntactic constituents, i.e. internalptuese

_ tree nodes. At training time, the positive examples are the
Frame Semantics [2] allows real-world knowledge to be cap;,geg corresponding to arguments, whereas all the remain-

tured by semantic frames, script-like conceptual SU@SUT o hodes are negative examples. RC is a multi-classifisatio

that describe particular types of situations, objectsvents o oniem over the set of the possible labels for an argument
along with their participating elements. For example, fiere (with respect to the chosen frame). Even in this case, rele la

a short definition of a sample frame: bels are strictly associated with internal tree nodes &t

COMMERCE_SCENARIO in the previous stage.
Core ElementsBUYER, GOODS, MONEY, SELLER In this work we focus on the two last steps of the system
non-Core ElementdlANNER, MEANS, PURPOSE RATE since they are the most interesting. The representation of
SubframesCOMMERCIAL_TRANSACTION the nodes in a learning algorithm is traditionally carried o

where the core frame elements are participant entitiestwhic?y €XPloiting syntactic information, since syntax is sgn

are supposed to be always present, whereas non-core Afied to semantics. Many features for representing the
just optional, more generic participants. Frame-to-frame nodes have been provided [6], which form the vectors to train

lations are also defined, like thBubframerelation which SVMs. We further exploit the potential of SVMs by using
states here a hierarchical dependency of them@eRr- kernel methods: we use Tree Kernels to encode the subtree

CIAL_TRANSACTION frame. The Berkeley FrameNet Project Which includes a target word and one of its arguments into
currently includes the definitions of nearly 800 frames € leaming algorithm, as shown in [7]. The next sections

4,000 frame elements, and 135,000 annotated English sefriefly summarize SVMs, kernel methods and Tree Kernels.
tences. An example of sentence annotation for tleev€C 22 SVMs and the Kernel Trick

MERCE_SCENARIO is reported hereafter: _ _
Ralemberg saifhgs.. already had gbuyefsuer Kernel Me.thods refer to a large class of learning glgorlthms
[for the Windcsoss — based on inner product vector spaces, among which Support

Vector Machines (SVMs) are one of the most well-known.
where the underlined worbluyeris the target word (ofex-  SVMs learn a hyperplan# (z) = @ - & + b = 0, where

ical unit, or predicate) which plays the role ekokerfor s the feature vector representation of a classifying dhjec

this particular frame. To automatically parse this infotioa ;7 ¢ R (a vector space) ande ) are parameters [9]. The

from plain text, we need to (a) represent th_e relation bemNee_C|assifying object is mapped inZ by a feature functiow.

the target word and the words compounding an argumentin  The kernel trick allows us to rewrite the decision hy-

terms of feature vectors, and (b) learn classification m®delperplane a$ ,_, ,vicid(0;) - ¢(0) + b, wherey; is equal

able to process such vectors. to 1 for positive and -1 for negative examples, € Rt ,

0; ¥i € {1,..,1} are the training instances, and the product
. . K(0;,0) = (¢(0;) - ¢(0)) is the kernel function associated

To implement a FrameNet-based parsing system we adopt@, the mappings. Note that we do not need to explicitly

multi-stage classification scheme over natural languargge. P apply the mappings, since we can directly use the kernel

vious studies in this direction apply Semantic Role Lalgglin function K (o:, o).

(SRL) approaches [6]. We extended the same strategy devel- A yraqitional example is given by the polynomial kernel:

oped in [7, 8], which now includes: (Target Word Detec-  p(,, 4,) = (¢4, -7 )¢, wherec is a constant andis the

tion, i.e. the semantically relevant words bringing prediaativ degree of the polynomial. Given the features used to map ob-

information are detected; (Eyame Disambiguationi.e. the ;octqjngn this kernel generates the space of all conjunctions
correct frame for any target word is chosen; Bjundary ¢ taature groups, up td elements.

Detection (BD)i.e. the sequences of words constituting the
frame elements (arguments) are detected; an&R¢# Clas- 2.3. Tree Kernels
sification (RC) which assigns semantic labels to the fram
elements detected in the previous stage.

2.1. Classification Steps

®rree kernels are scalar products that evaluate the number of
common subtrees. For example, Figure 1 shows a tree along
Lhitp://www.ist-luna.eu with some of its tree fragments. These are matched against




s VP VP VP VP . .
/N /N I\ /N /N manual correction was carried out to make sure that the nodes
NP VP - VBZ NP VBZ NP VBZ NP VBZ NP . . . . .
. /N A A AN VAN potentially carrying semantic information have correcbco
NNP VBZ NP am D N D N am D N am D N i . i X
AN [ oS stituent boundaries. Frame information was then annotated
[ on top of the parse trees, attaching target labels to tHaieck
SRR TNeENY words, and frame element labels to internal tree nodes. &her
viz NPVBZ NRD N NIP L am auser.. possible, we applied the frame and frame element definitions
an a wer as in the English FrameNet. Nonetheless, in case of gaps
Fig. 1. A tree for the sentencé am a user” along with some of its  in the original model (with respect to owery specific do-
tree fragments. main), we introduced new frames and related frame elements.

In particular, we identified 154 already existing frames and
those from another tree. More formally, given two trd@s  introduced 20 new frames, mainly concerning data process-
andTy, let{f1, f2,..} = F be the set of substructures (frag- jng such as MvIGATION, DISPLAY_DATA, LOSEDATA,
ments) and/;(n) be equal to 1 iff; is rooted at node:, 0 CreaTE_DATA. The most frequent frames are related to the
Othel‘Wise. The CO”inS and Duffy'S kel‘nel iS deﬁned as information exchangethat is typ|ca| ofa he'p_desk fm“fn)r

example ELLING, GREETING, CONTACTING, STATEMENT,

TE(T1,T2) = Xon,eNg, Zonaeng, An1,m2), (1) RECOFI)?DING, COMMUNICATION. Another important group

includes frames describing software/hardware functional
ity such as BING_IN_OPERATION, BEING_OPERATIONAL,
CHANGE_OPERATIONAL_STATE, OPERATIONAL_TESTING.
®PELLING and GREETING are the most frequent frames, with
277 and 270 frame instances respectively (also see [12] for
a complete analysis). Overall, we annotated 662 turns of
HM dialogs with 923 frame instances, and 1,997 turns of HH
dialogs with 1,951 frame instances. In general, HH dialogs
show a higher frame variability than HM dialogs because
spontaneous conversations can concern minor less related
_ T ne(n) topics as well, whereas HM dialogs are more task-oriented.
n2 are not pre-terminals, thed(ni,n2) = [[;2," (1 +  Every HM turn has 1.39 annotated instances on average,
A(c},,,ch,)), wherenc(nq) is the number of children af1  \whereas the HH turns show a lower semantic density with
andd, is thej-th child of n. 0.98 annotated instances per turn. This can be explained by

Such tree kernel can be normalized, andfactor can be  the fact that in human turns there are speech disfluenciés suc

added to reduce the weight of large structures (refer to [104s interruptions and ungrammatical sentences.
for a complete description). Most important, we can take ad-

vantage of the joint space between the tree and the polyhomia
kernel by simply summing them, i.&,,,,,, = TK + PK.

where Ny, and N, are the sets of nodes ifiy and7% re-
spectively, andA(ny, ny) = Y171 Ii(n1)1;(ny). The latter
is equal to the number of common fragments rooted in nod
ny andns. A can be computed as follows:

(1) if the productions (i.e. the nodes with their direct dnén)
atn; andn, are differentthem\(ny,ns) = 0;

(2) if the productions at; andns are the same, and, and
ns only have leaf children (i.e. they are pre-terminal sympols
thenA(nl,ng) =1;

(3) if the productions at; andn. are the same, ang;, and

4. EXPERIMENTS

We carried out several experiments on the spoken dialog cor-
3. THE LUNA SPOKEN DIALOG CORPUS pus described above to test the effectiveness of our FrameNe

The LUNA European Project addresses the problem of reaFarser. We present the results of the second and third stage o

. ; . e system described in Section 2.1, that is BD and BD+RC.
time understanding of spontaneous speech in the context ¢

i X . ) erefore, we assume the target word (i.e. the predicate for
advanced telecom services, and it applies to Italian, Frenc_, . . o L
; ) . ; which the arguments must be identified) along with its cdrrec
and Polish. As a first step, the project has made avallablefzﬁl

: : . ame as given. We only used the HH corpus portion, since
benchmark collection of Italian dialogs. The corpus cutigen HM dialogs are less interesting with respect to languagie var
includes 50 human-human (HH) and 50 human-machine 9 9 P guag

. . ability. For each dialog, the set of its turns was considered
(HM) dialogs, recorded in the call center of the help-desk fa 4 .
cility of the Italian Consortium for Information Systemshd creating a dataset of 1,677 target words over 162 different

frames. Such dataset was further split in a 90% for training

HH dialogs are spontaneous conversations between a call r,521target words) and a 10% for testing (156 target words)
and an operator about software and hardware problems. The'™_ . . .
Given the above dataset, different learning strategies wer

HM dialogs are a set of “wizard of 0z” dialogs where the user rried out. For both BD and RC, we can split the data re-

explains a problem and the wizard reacts according to one @a . i
ten possible predefined scenarios. ated to all the frames in several ways. For BD, five mod

The corpus was first annotated with part of speecf?ls are trained across all the frames according to the part of

and morphosyntactic features at word level using an augpeech of the target wordgPOSwise splitting For RC, the

tomat.ic tagger, and then SynFaCtica"y pa_rsed with Bikel's 2Frame Semantics allowserbal nominal adjectival adverbial and
constituency-based parser trained for Italian [11]. Next, prepositionalpredicates.




multi-classification models are naturally split accordioghe  corresponding result on the FrameNet corpus’i=0.784,
different frames. In addition, POSwise splitting can eithe  R=0.571, F=0.661 (with byPOSandFrame setting), where
applied or not. This leads to two different RC settings: “by-the corpus contains much more data, its sentences come from
POSandFrame” and “byFrame”. a standard written text (no disfluencies are present), aisd it

in English language which is morphologically simpler than
Italian. On the other hand, the LUNA corpus includes optimal
syntactic annotation which exactly fits Frame Semanticd, an

| Eval Setting] P R | P R F ]
| byPOSandFrame RC learning configuration |

PK the number of frames is far lower than in FrameNet.
BD c ) ) ) '208 '269 '224 Finally, the good performance achieved for Italian shows
BD+R - T-K - | 67 PKl+:r)|'?< 667 that this FrameNet parsing approach can be used to label con-
versational speech in any language using small training. dat
BD .887 .856 .871| .905 .873 .889 M h h K I f ific d .
BD+RC 674 651 662 688 664 676 Moreover, the approach works well for specific domains (ours
. - . is averyspecific one). Nonetheless, additional tests on auto-
| byFrame RC learning configuration | . . .
matic transcriptions are needed since at the moment our ex-
PK periments have been only carried out on manual transcrip-
BD - - - 900 .869 .884 . - . .
tions. However, our findings are important since they show
BD+RC - - - 769 742 756 .
TR PRITK that future research on complex spoken dialog systems can
BD 887 856 871 905 873 .889 s_uccessfully exploit automatically generated Frame Seman
BD+RC 765 738 .751| .774 747 .760 tics.
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