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Abstract

In this paper we present a novel approach
for learning entailment relations from pos-
itive and negative examples. We define
a similarity between two text-hypothesis
pairs based on a syntactic and lexical in-
formation. We experimented our model
within the RTE 2006 challenge obtaining
the accuracy of 63.88% and 62.50% for
the two submissions.

1 Introduction

Dermining whether or not a textT entails a hy-
pothesisH is quite complex even when all infor-
mation needed to derive such inference is explic-
itly asserted (Zaenen et al., 2005). For example,
the sentenceT1: “At the end of the year, all solid
companies pay dividends.” entails the hypothesis
H1: “At the end of the year, all solid insurance
companies pay dividends.” but it does not entail
the hypothesisH2: “At the end of the year, all solid
companies pay cashdividends.”

These implications are considered uncontrover-
sial as they can be derived from the content ofT1,
H1, andH2. Nevertheless, asH1 andH2 contain
the same words, the entailment cannot be derived
by simply relying on lexical distance (or similan-
rity). To carry out the correct inference we would
need additional rules. For example, by studying
the following implication:

T3 ⇒ H3?
T3 “All wild animals eat plants that have

scientifically proven medicinal proper-
ties.”

H3 “All wild mountain animals eat plants
that have scientifically proven medici-
nal properties.”

we note thatT3 is structurally (and somehow lex-
ically) similar toT1 andH3 is more similar toH1

than toH2, thus fromT1 ⇒ H1 we may extract
rules to derive thatT3 ⇒ H3.

The above example suggests that, we should
rely on both (1) aintra-pair similarity betweenT
andH and (2) across-pairsimilarity between two
pairs (T ′,H ′) and (T ′′,H ′′). The latter similar-
ity along with a set of annotated examples allow a
learning algorithm to automatically derive syntac-
tic and lexical rules that can solve complex entail-
ment cases.

In this paper, we define a new cross-pair sim-
ilarity measure based on syntactic interpretations
of the sentences. Then, we use such similarity
with traditional intra-pair similarities to define a
novel semantic kernel function. We experimented
such kernel with Support Vector Machines (Vap-
nik, 1995) on the Recognizing Textual Entailment
(RTE) challenge test-beds. The comparative re-
sults show that we have designed an effective way
to automatically learn entailments from examples.

The rest of the paper is organised as follows.
Sec. 2 analyses the problems in learning entail-
ment from examples an sketches the model. This
latter is decribed in Sec. 3 and refined in Sec. 3.3.
Its experimental results are described in Sec. 4.

2 Challenges in learning from examples

In the introductory section, we have shown that to
carry out automatic learning from examples, we
need to define a cross-pair similarity. Its defini-
tion is not straightforward as the measure has to
detect whether two pairs(T ′,H ′) and (T ′′,H ′′)
realize the samerewrite rule. Besides lexical and
syntactic similarity between texts and hypotheses,
we need to take into account the movements of
relevant constituentsfrom T ′ to H ′ and compar-
ing with the corresponding movements in the other
pair (T ′′,H ′′). Only those pairs showing compat-
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Figure 1:Two similar pairs of sentences both in entailment

ible constituent movements will realize the same
rewrite rule. To detect compatible movements we
need to carry out three main steps:

First, we detect links between wordswt in T

that are equal, similar, or semantically dependent
on wordswh in H. The pairs(wt, wh) are called
anchorsand we associate them withplaceholders.
For example, in Fig. 1,2” indicates the(compa-
nies,companies)anchor betweenT1 andH1. Two
pairs can be aligned if they show a similar anchor-
ing. (T1,H1) and(T3,H3) show compatible con-
stituent movements as the dashed lines that con-
nect placeholders of the two pairs formloopswith
the anchors (dotted lines), e.g.2’ (T1), 2’ (H1),
a’ (H3) and a’ (T3).

Second, we use the anchors to extract the sub-
parse trees that contain most of the information
useful to derive the constituent movements (and
consequently the entailment). Fig. 1 shows the
three pairs(T1,H1), (T1,H2) and (T3,H3) al-

ready considered in the introduction. The inter-
esting subtrees are those that exactly covers the
anchors of the textsT1 andT3 as well as of the hy-
potheses,H1, H2 andH3 (i.e. the bold subtrees).
Although the lexicals inT3 andH3 are quite dif-
ferent from those inT1 andH1, their bold subtrees
are more similar to those ofT1 andH1 than toT1

andH2, respectively. Therefore, to make the en-
tailment decision for (T3,H3), we should use the
results available for(T1,H1).

Finally, we keep track of the constituent move-
ments by finding the correct mapping between the
anchor sets. LetA′ andA′′ be the placeholders of
(T ′,H ′) and(T ′′,H ′′), respectively, without loss
of generality we consider|A′| ≥ |A′′| and we align
a subset ofA′ to A′′. The best alignment is the
one that maximizes the syntactic and lexical over-
lapping of the two subtrees induced by the aligned
set of anchors.

Let C be the set of all bijective mappings from



a′ ⊆ A′ : |a′| = |A′′| to A′′, an elementc ∈ C

is a substitution function. We define as the best
alignment the one determined bycmax =

argmaxc∈C(KT (t(H ′, c), t(H ′′, i))+KT (t(T ′, c), t(T ′′, i))
(1)

where (1)t(S, c) returns the syntactic tree of the
hypothesis (text)S with placeholders replaced by
means of the substitutionc, (2) i is the identity
substitution and (3)KT (t1, t2) is a function that
measures the similarity between the two treest1
and t2 (for more details see Sec. 3.2) . For ex-
ample, thecmax between(T1,H1) and(T3,H3) is
{( 2’ , a’ ), ( 2” , a” ), ( 3 , b), ( 4 , c)}.

3 Similarity Models

In this section we describe how anchors are found
at the level of a single pair(T,H) (Sec. 3.1).
The anchoring process gives the direct possibility
of implementing a inter-pair similarity that can be
used as a baseline approach or in combination with
the cross-pair similarity. This latter will be imple-
mented with tree kernel functions over syntactic
structures (Sec. 3.2).

3.1 Anchoring and Lexical Similarity

The algorithm that we design to find the anchors
is based on similarity functions between words or
more complex expressions. Our approach is in line
with many other researches (e.g. (Corley and Mi-
halcea, 2005; Glickman et al., 2005)). Hereafter,
we describe the differences with the other meth-
ods.

Given the set of content words (verbs, nouns,
adjectives, and adverbs)WT andWH of the two
sentencesT andH, respectively, the set of anchors
A ⊂ WT ×WH is built using a similarity measure
between two wordssimw(wt, wh). Each element
(wt, wh) ∈ A should have the property:

simw(wt, wh) = max
w′

t∈WT

simw(w′
t, wh)

Note that according to this property, elements in
WH can partecipate in more than one anchor and
conversely more than one element inWH can be
linked to a single elementw ∈ WT .

Moreover,simw(wt, wh) can be defined using
different indicators and resources. First of all,
two words are maximally similar if these have the
same surface formwt = wh. Second, we can use
one of the WordNet (Miller, 1995) similarities in-
dicated withd(lw, lw′) (in line with what was done

in (Corley and Mihalcea, 2005)) and different rela-
tion between words such as the lexical entailment
between verbs (Ent) and derivationally relation
between words (Der). Finally, we use the edit dis-
tance measurelev(wt, wh) to capture the similar-
ity between words that are missed by the previous
analysis for misspelling errors or for the lack of
derivationally forms not coded in WordNet.

As result, given the syntactic category
cw ∈ {noun, verb, adjective, adverb} and
the lemmatized formlw of a word w, the simi-
larity measure between two wordsw and w′ is
defined as follows:

simw(w, w
′
) =



































1 if w = w′∨
lw = l

w′ ∧ cw = c
w′∨

((lw, cw), (l
w′ , c

w′ )) ∈ Ent∨
((lw, cw), (l

w′ , c
w′ )) ∈ Der∨

lev(w, w′) = 1
d(lw, l

w′ ) if cw = c
w′ ∧ d(lw, l

w′ ) > 0.2
0 otherwise

(2)

It is worth noticing that, the above measure is not
a puresimilarity measure as it includes the entail-
ment relation that does not represent synonymy or
similarity between verbs. To emphasize the contri-
bution of each used resource, in the experimental
section, we will compare Eq. 2 with some versions
that exclude some word relations.

The above word similarity measure can be used
to compute the similarity betweenT and H. In
line with (Corley and Mihalcea, 2005), we define
it as:

s1(T, H) =

∑

(wt,wh)∈A

simw(wt, wh) × idf(wh)

∑

(wt,wh)∈A

idf(wh)
(3)

whereidf(w) is the inverse document frequency
of the word w. For sake of comparison, we
consider also the corresponding more classical
version that do not apply the inverse document
frequency

s2(T, H) =
∑

(wt,wh)∈A

simw(wt, wh)/|A| (4)

From the above intra-pair similaritys1 ands2,
we can obtain the baselinecross-pair similarity
based on only lexical information:

Ki((T
′, H ′), (T ′′, H ′′)) = si(T

′, H ′) × si(T
′′, H ′′), (5)

wherei ∈ {1, 2}. In the next section we define a
novel cross-pair similarity that takes into account
syntactic evidence by means of tree kernel func-
tions.



3.2 Cross-pair syntactic kernels

Section 2 has shown that to measure the syn-
tactic similarity between two pairs,(T ′,H ′)
and (T ′′,H ′′), we should capture the number of
common subtrees between texts and hypotheses
that share the same anchoring scheme. The best
alignment between anchor sets, i.e. the best
substitutioncmax, can be found with Eq. 1. As the
corresponding maximum quantifies thealignment
degree, we could define a cross-pair similarity as:

Ks((T
′, H ′), (T ′′, H ′′)) =

max
c∈C

(

KT (t(H ′, c), t(H ′′, i)) + KT (t(T ′, c), t(T ′′, i)
)

,

(6)

where asKT (t1, t2) we use the tree kernel func-
tion defined in (Collins and Duffy, 2002). This
evaluates the number of subtrees shared byt1 and
t2, thus defining an implicit substructure space.

Formally, given a subtree spaceF =
{f1, f2, . . . , f|F|}, the indicator functionIi(n) is
defined. It is equal to 1 if the targetfi is rooted
at noden and equal to 0 otherwise. A tree-
kernel function overt1 and t2 is KT (t1, t2) =
∑

n1∈Nt1

∑

n2∈Nt2
∆(n1, n2), whereNt1 andNt2

are the sets of thet1’s andt2’s nodes, respectively.
In turn ∆(n1, n2) =

∑|F|
i=1 λl(fi)Ii(n1)Ii(n2),

where0 ≤ λ ≤ 1 andl(fi) is the number of lev-
els of the subtreefi. Thusλl(fi) assigns a lower
weight to larger fragments. Whenλ = 1, ∆ is
equal to the number of common fragments rooted
at nodesn1 and n2. As shown in (Collins and
Duffy, 2002), ∆ can be computed inO(|Nt1 | ×
|Nt2 |).

TheKT function has been proven to be a valid
kernel, i.e. its associatedGrammatrix is positive-
semidefinite. Some basic operations on kernel
functions, e.g. the sum, are closed with respect
to the set of valid kernels. Thus, if the maximum
held such property, Eq. 6 would be a valid ker-
nel and we could use it in kernel based machines
like SVMs. Unfortunately, a counterexample il-
lustrated in (Boughorbel et al., 2004) shows that
themaxfunction does not produce valid kernels in
general.

However, we observe that (1)
Ks((T

′,H ′), (T ′′,H ′′)) is a symmetric func-
tion since the set of transformationC are always
computed with respect to the pair that has the
largest anchor set. (2) In (Haasdonk, 2005),
it is shown that when kernel functions are not
positive semidefinite, SVMs still solve a data

separation problem in pseudo Euclidean spaces.
The drawback is that the solution may be only
a local optimum. Therefore, we can experiment
Eq. 6 with SVMs and observe if the empirical
results are satisfactory. Section 4 shows that the
solutions found by Eq. 6 produce accuracy higher
than those evaluated on previous approaches.

3.3 Enhancing cross-pair syntactic similarity

As the computational cost of the similarity mea-
sure depends on the number of the possible set of
correspondencesC and this depends on the size of
the anchor sets, we reduce the number ofplace-
holdersused to represent the anchors. The idea
is the following. If a set of placeholders is con-
tained in both a chunk of the hypothesis and a
chunk of the text we replace it with a single la-
bel. Moreover, placeholders are propagated in the
nodes of the syntactic trees following the head of
the constituents (see Fig. 1). This enriches the
trees with explicit dependecies between anchors.
Finally, since, in general, texts implying a hypoth-
esis contain more information than what is actu-
ally needed to support the entailment, we also re-
duce the syntactic trees of the texts. Here, we keep
only that part of the tree playing an active role in
supporting the entailment with respect to the hy-
pothesis.

4 Experimental investigation

The aim of the experiments is twofold: (1) show-
ing that entailments can be learned from examples
and that our kernel functions over syntactic struc-
tures are effective to derive syntactic properties;
(2) choosing the systems to be submitted to the
challenge. The above goals can be achieved by ex-
perimenting the different intra and cross pair sim-
ilarity measures.

4.1 Experimental settings

For the experiments, we used the RTE Challenge
data sets, which we name as follows:
- D1, T1 and D2, T2 are, respectively, the de-
velopment and the test sets of the first and second
RTE challenges.
- ALL is the union ofD1, D2, andT1, which we
also split in 70%/30% (training/testing). This set
is useful to test if we can learn entailment from the
data prepared in the two different challenges.
- D2(50%)′ andD2(50%)′′ is a random split of
D2. As the data sets of the two competitions may



Experiment Settings
w = w′ ∨ lw = l

w′ ∧ cw = c
w′

√ √ √ √ √ √ √ √

cw = c
w′ ∧ d(lw, l

w′ ) > 0.2
√ √ √ √ √ √

((lw , cw), (l
w′ , c

w′ )) ∈ Der
√ √ √ √

((lw , cw), (l
w′ , c

w′ )) ∈ Ent
√ √ √ √

lev(w, w′) = 1
√ √ √

idf
√ √ √ √ √ √

Only Synt Trees
√

Synt Trees with placeholders
√

Datasets
Train:D1 Test:T1 0.5388 0.5813 0.5500 0.5788 0.5900 0.5888 0.6213 0.6300
Train:T1 Test:D1 0.5714 0.5538 0.5767 0.5450 0.5591 0.5644 0.5732 0.5838
Train:D2(50%)′ Test:D2(50%)′′ 0.6034 0.5961 0.6083 0.6010 0.6083 0.6083 0.6156 0.6350
Train:D2(50%)′′ Test:D2(50%)′ 0.6452 0.6375 0.6427 0.6350 0.6324 0.6272 0.5861 0.6607
Train:D2 Test:T2 0.6000 0.5950 0.6025 0.6050 0.6050 0.6038 0.6238 0.6388
Mean 0.5918 0.5927 0.5960 0.5930 0.5990 0.5985 0.6040 0.6297

(± 0.0396 ) (± 0.0303 ) (± 0.0349 ) (± 0.0335 ) (± 0.0270 ) (± 0.0235 ) (± 0.0229 ) (± 0.0282 )
Train:ALL(70%) Test:ALL(30%) 0.5902 0.6024 0.6009 - 0.6131 0.6193 0.6086 0.6376
Train:ALL Test:T2 0.5863 0.5975 0.5975 0.6038 - - 0.6213 0.6250

Table 1:Experimental results of the different methods over different test settings

differ we created thishomogeneoussplit.
We also used the following resources:

- The Charniak parser (Charniak, 2000) and the
morpha lemmatiser (Minnen et al., 2001) to carry
out the syntactic and morphological analysis.
- WordNet 2.0 (Miller, 1995) to extract both the
verbs in entailment,Ent set, and the derivation-
ally related words,Der set.
- Thewn::similarity package (Pedersen et
al., 2004) to compute the J&C distance (Jiang and
Conrath, 1997) used asd(lw, lw′).
- A selected portion of the British National Cor-
pus1 to compute theidf . We assigned the maxi-
mumidf to unknown words.
- SVM-light-TK2 (Moschitti, 2004) which en-
codes the basic tree kernel function,KT , in SVM-
light (Joachims, 1999). We used such software
to implementKs (Eq. 6), K1, K2 (Eq. 5) and
Ks + Ki kernels. The latter combines traditional
approaches (i ∈ {1, 2}) with our new kernel.

4.2 Results and analysis

Table 1 reports the results of different similarity
kernels on the different training and test split de-
scribed in the previous section. The table is orga-
nized as follows:

The first 5 rows (Experiment settings) reports
the intra-pair similarity measures defined in Sec-
tion 3.1, the 6th row refers to only theidf simi-
larity metric whereas the following two rows re-
port the cross-pair similarity carried out with Eq.
6 with (Synt Trees with placeholders) and without
(Only Synt Trees) augmenting the trees with place-
holders, respectively. Each column in theExper-
iment settingsindicates a different intra-pair sim-

1http://www.natcorp.ox.ac.uk/
2SVM-light-TK is available at

http://ai-nlp.info.uniroma2.it/moschitti/

ilarity measure build by means of a combination
of basic similarity approaches. These are speci-
fied with the check sign

√
. For example, Column

5 refers to a model using: the surface word form
similarity, thed(lw, lw′) similarity and theidf .

The next 5 rows show the accuracy on the
data sets and splits used for the experiments and
the next row reports the average and Std. Dev.
over the previous 5 results. Finally, the last two
rows report the accuracy on ALL dataset split in
70%/30% and on the whole ALL dataset used for
training and T2 for testing.

From the table we note the following aspects:
First, the lexical-based distance kernelsK1 and

K2 (Eq. 5) show accuracy significantly higher
than the random baseline, i.e. 50%. In all the
datasets (except for the first one), thesimw(T,H)
similarity, based on the lexical overlap (first col-
umn), provides an accuracy essentially similar
to the best lexical-based distance method. The
dataset “Train:D1-Test:T1” shows that the accu-
racy reported for the best systems, i.e. 58.6%
(Glickman et al., 2005; Bayer et al., 2005), is not
significantly far from the result obtained withK1

that uses theidf .
Second, our approach (last column) is signifi-

cantly better than all the other methods as it pro-
vides the best result for each combination of train-
ing and test sets. On the “Train:D1-Test:T1” test-
bed, it overcomes the accuracy of the current state-
of-the-art models (Glickman et al., 2005; Bayer
et al., 2005) of about 4.4 absolute percent points
(63% vs. 58.6%) and 4% over our best lexical sim-
ilarity measure. By comparing the average on all
datasets, our system improves of at least 3 absolute
percent points all the methods.

Finally, the accuracy produced bySynt Trees
with placeholdersis quite higher than the one ob-



tained with Only Synt Trees. Thus, the use of
placeholders is fundamental to automatically learn
entailments from examples.

We submitted two systems derived using two
different learning sets:D2 and ALL. As ex-
pected, the accuracy (63.88%) obtained with the
first system (trained onD2) is higher than the one
(62.50%) obtained with the second system (trained
onALL). Homogeneity between training and test-
ing is fairly relevant.

4.2.1 Qualitative analysis

Hereafter we show some instances selected
from the first experiment “Train:T1-Test:D1”.
They were correctly classified by our overall
model (last column) and miss-classified by the
models in the seventh and in the eighth columns.
The first is an example in entailment:

T ⇒ H (id: 35)

T “Saudi Arabia, the biggest oil pro-
ducer in the world, was once a sup-
porter of Osama bin Laden and his
associates who led attacks against the
United States.”

H “Saudi Arabia is the world’s biggest oil
exporter.”

It was correctly classified by probably exploiting
examples like these two:

T ⇒ H (id: 929)

T “Ron Gainsford, chief executive of the
TSI, said: ...”

H “Ron Gainsford is the chief executive of
the TSI.”

T ⇒ H (id: 976)

T “Harvey Weinstein, the co-chairman of
Miramax, who was instrumental in pop-
ularizing both independent and foreign
films with broad audiences, agrees.”

H “Harvey Weinstein is the co-chairman
of Miramax.”

A more interesting rule links the following two
sentences which are not in entailment:

T ; H (id: 2045)

T “Mrs. Lane, who has been a Director
since 1989, is Special Assistant to the
Board of Trustees and to the President
of Stanford University.”

H “Mrs. Lane is the president of Stanford
University.”

It was correctly classified using instances like:

T ; H (id: 2044)

T “Jacqueline B. Wender is Assistant to
the President of Stanford University.”

H “Jacqueline B. Wender is the President
of Stanford University.”

T ; H (id: 2069)

T “Grieving father Christopher Yavelow
hopes to deliver one million letters to
the queen of Holland to bring his chil-
dren home.”

H “Christopher Yavelow is the queen of
Holland.”

Here, the implicit rule is:”X (VP (V ...) (NP (to Y)
...)” does not implies”X is Y” .
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