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Abstract
Spoken Language Understanding performs automatic concept
labeling and segmentation of speech utterances. For this task,
many approaches have been proposed based on both genera-
tive and discriminative models. While all these methods have
shown remarkable accuracy on manual transcription of spoken
utterances, robustness to noisy automatic transcription is still
an open issue. In this paper we study algorithms for Spoken
Language Understanding combining complementary learning
models: Stochastic Finite State Transducers produce a list of
hypotheses, which are re-ranked using a discriminative algo-
rithm based on kernel methods. Our experiments on two differ-
ent spoken dialog corpora, MEDIA and LUNA, show that the
combined generative-discriminative model reaches the state-of-
the-art such as Conditional Random Fields (CRF) on manual
transcriptions, and it is robust to noisy automatic transcriptions,
outperforming, in some cases, the state-of-the-art.
Index Terms: Spoken Language Understanding, Discrimina-
tive Learning, Kernel Methods

1. Introduction
In Spoken Dialog Systems, the Language Understanding mod-
ule performs the task of translating a spoken sentence into its
meaning representation based on semantic constituents. These
are the units for meaning representation, called also concepts.
Concepts are instantiated by sequences of words and the Spo-
ken Language Understanding (SLU) module finds the associa-
tion between words and concepts using machine learning algo-
rithms.

In the last decade two major approaches have been pro-
posed to find this correlation: (i) generative models, whose
parameters refer to the joint probability of concepts and con-
stituents; and (ii) discriminative models, which learn a classi-
fication function based on conditional probabilities of concepts
given words.

A simple but effective generative model is the one based
on Stochastic Finite State Transducers (SFST) [1]. It performs
SLU as a translation process from words to concepts using FST.

An example of discriminative model used for SLU is the
one based on Support Vector Machines (SVMs) [2], as shown
in [1]. In this approach, data are mapped into a vector space and
SLU is performed as a classification problem using Maximal
Margin Classifiers [3].

A relatively more recent approach to SLU is based on Con-
ditional Random Fields (CRF) [4]. CRFs are undirected-graph
models conditionally trained and they belong to the class of
discriminative models. CRFs take into account many non-
independent features of the input to predict the best concept
sequence, like discriminative models. Since they are condition-
ally trained, they don’t need to train explicitly features depen-
dencies, like generative models would do.

Generative models have the advantage to be more robust
to overfitting while discriminative models are more robust to
irrelevant features. Both approaches are particularly suitable
for the SLU task [1]. Although these models have proven to
be very effective on manual transcriptions of speech sentences,
their robustness on noisy input, like automatic transcription of
a recognizer, is an open issue. Therefore studies on effective
approaches for automatic speech recognition and understanding
is an interesting research field.

Discriminative and generative models have very different
characteristics and ways of encoding prior knowledge; we be-
lieve that models taking into account characteristics of both ap-
proaches are particularly promising to improve the robustness
on noisy automatic transcription.

In this paper, we propose a method for SLU based on the
joint use of generative and discriminative models: FSTs are
used to generate a list of SLU hypotheses, which are re-ranked
using SVMs and kernel methods as proposed in [5] for re-
ranking predicate argument structures. According to such work,
we encode arbitrary long distance dependencies between words
and concepts, by means of Tree Kernels (TK) [6].

We experimented with our approach on two different cor-
pora: the French MEDIA corpus [7] and a new corpus acquired
in the European project LUNA1 [8].

The results show that our approach can improve the state-
of-the-art on both manual and automatic transcriptions of spo-
ken sentences, showing a very good robustness to noisy input.
Additionally, our method is easily improvable new effective
structural features designing.

The rest of the paper is organized as follows: in Section
2, we describe how SLU hypotheses are generated and used to
train a discriminative re-ranker. In Section 3, we describe the
corpora and the experiments used to evaluate our model. In
Section 4, we show the results of the evaluation of our approach
compared with state-of-the-art models and finally, in Section 5,
we provide conclusion and future work.

2. Re-ranking SLU Hypotheses with SVMs
and Kernel Methods

2.1. Generative Model: Stochastic Conceptual Language
Model (SCLM)

The first step of our approach is to produce a list of SLU hy-
potheses using a Stochastic Conceptual Language Model. This
model is the same described in [1] with the only difference that
we train the language model using the SRILM toolkit [9] and we
then convert it into a Stochastic Finite State Transducer (SFST).
This allows us to use a wide group of language models, back-off
or interpolated with many kind of smoothing techniques [10].

Given the input sentence:
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Figure 1: Syntactic Tree fragments

ho un problema col monitor
(I have a problem with my screen)
a possible semantic annotation is:
null{ho} PROBLEM{un problema} HARDWARE{col monitor},

where PROBLEM and HARDWARE are two domain concepts
and null is the concept used for words not meaningful for the
task. In order to have a one-to-one association between words
and concepts, the concepts are segmented using begin (B) and
inside (I) concept markers:

null{ho} PROBLEM-B{un} PROBLEM-I{problema}
HARDWARE-B{col} HARDWARE-I{monitor}

This annotation is performed by the model using the com-
bination of three transducers:

λSLU = λW ◦ λW2C ◦ λSLM ,

where λW is the transducer representation of the input sen-
tence, λW2C is the transducer mapping words to concepts and
λSLM is the Stochastic Conceptual Language Model trained
with SRILM toolkit and converted in FST. The SCLM repre-
sents joint probability of word and concept sequences:

P (W,C) =

kY
i=1

P (wi, ci|hi),

where W = w1..wk, C = c1..ck and hi = wi−1ci−1..w1c1.

2.2. Discriminative Re-ranking

Our discriminative re-ranking is essentially an SVM (i.e. a clas-
sifier) [2] trained with pairs of conceptually annotated sentences
produced by the FST described in previous section. SVM learns
to select which annotation has an error rate lower than the oth-
ers so that the m-best annotations can be sorted based on their
correctness. In this section we focus on the kernels used to im-
plement our re-ranking model.

2.3. Tree kernels

Tree kernels represent trees in terms of their sub-structures
(fragments). The kernel function detects if a tree subpart (com-
mon to both trees) belongs to the feature space. For such pur-
pose, the desired fragments need to be described. We con-
sider an important characterization: the syntactic tree fragments
(STF).

An STF is a general subtree whose leaves can be non-
terminal symbols. For example, Figure 1 shows 9 STFs (out
of 17) of the subtree rooted in VP (of the left tree). The STFs
satisfy the constraint that grammatical rules cannot be broken.
For example, [VP [V NP]] is an STF, which has two non-
terminal symbols, V and NP, as leaves whereas [VP [V]] is
not an STF.

2.4. Counting Shared SubTrees

The main idea of tree kernels is to compute the number of com-
mon substructures between two trees T1 and T2 without ex-
plicitly considering the whole fragment space. To evaluate the

Corpus Train set Test set
LUNA words concepts words concepts
Dialogs 183 67
Turns 1.019 373
Tokens 8.512 2.887 2.888 984
Vocab. 1.172 34 - -
OOV rate - - 3.2% 0.1%

Table 1: Statistics on the LUNA WOZ corpus

above kernels between two trees T1 and T2, we need to define
a set F = {f1, f2, . . . , f|F|}, i.e. a tree fragment space and an
indicator function Ii(n), equal to 1 if the target fi is rooted at
node n and equal to 0 otherwise. A tree-kernel function over
T1 and T2 is TK(T1, T2) =

P
n1∈NT1

P
n2∈NT2

∆(n1, n2),
where NT1 and NT2 are the sets of the T1’s and T2’s nodes, re-
spectively, and ∆(n1, n2) =

P|F|
i=1 Ii(n1)Ii(n2). The latter is

equal to the number of common fragments rooted in the n1 and
n2 nodes.

In the following sections we report the equation for the ef-
ficient evaluation of ∆ for ST kernel.

2.5. Syntactic Tree Kernels (STK)

The ∆ function depends on the type of fragments that we con-
sider as basic features. For example, to evaluate the fragments
of type STF, it is defined as:

1. if the productions at n1 and n2 are different then
∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the same, and n1 and
n2 have only leaf children (i.e. they are pre-terminals
symbols) then ∆(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1 and
n2 are not pre-terminals then

∆(n1, n2) =

nc(n1)Y
j=1

(σ + ∆(cjn1 , c
j
n2)) (1)

where σ ∈ {0, 1}, nc(n1) is the number of children of n1 and
cjn is the j-th child of the node n. Note that, since the produc-
tions are the same, nc(n1) = nc(n2). ∆(n1, n2) evaluates the
number of STFs common to n1 and n2 as proved in [11]. More-
over, a decay factor λ can be added by modifying steps (2) and
(3) as follows2:

2. ∆(n1, n2) = λ,
3. ∆(n1, n2) = λ

Qnc(n1)
j=1 (σ + ∆(cjn1 , c

j
n2)).

The computational complexity of Eq. 1 is O(|NT1 | ×
|NT2 |) but as shown in [6], the average running time tends to
be linear, i.e. O(|NT1 |+ |NT2 |), for natural language syntactic
trees.

2.6. Re-ranking Models

The FST model generates the m most likely concept annota-
tions, which are used to build annotation pairs,

˙
si, sj

¸
as de-

scribed in [5, 12]. These will be positive instances if and only
if si has less concept annotation errors than sj , with respect

2To have a similarity score between 0 and 1, we also apply the nor-
malization in the kernel space, i.e.:
K′(T1, T2) =

TK(T1,T2)√
TK(T1,T1)×TK(T2,T2)

.



Corpus Train set Test set
Media words concepts words concepts
Turns 12,922 3,518
# of tokens 94,912 43,078 26,676 12,022
Vocabulary 5,307 80 - -
OOV rate - - 0.01% 0.0%

Table 2: Statistics on the MEDIA corpus

Figure 2: The Semantic Tree used for STK or PTK

to the manual annotation of the corpus. Thus, a trained binary
classifier can decide if si is more accurate than sj . Each can-
didate annotation si is described by a word sequence with its
concept annotation. Considering the example of Section 2.1 (ho
un problema col monitor), a pair of annotations

˙
si, sj

¸
could

be
si: NULL ho PROBLEM-B un PROBLEM-I problema

HARDWARE-B col HARDWARE-I monitor
sj : NULL ho ACTION-B un ACTION-I problema HARDWARE-

B col HARDWARE-B monitor

The second annotation is less accurate than the first since
”problema” (problem) is annotated as ACTION and ”col mon-
itor” (with the screen) is split in two different concepts.

Given pairs of annotated sentences, let ek be the pair˙
s1k, s

2
k

¸
, our re-ranking model is based on the following ker-

nel (firstly adopted on tree kernels in [5]):

KR(e1, e2) = K(s11, s
1
2) +K(s21, s

2
2) (2)

− K(s11, s
2
2)−K(s21, s

1
2)

where K in this case is STK.
This schema, consisting in summing four different ker-

nels, has been already applied in [11] for syntactic parsing re-
ranking, where the basic kernel was a tree kernel, and in [12],
where, to re-rank Semantic Role Labeling annotations, a tree
kernel was used on a semantic tree.

In order to use the kernels described above on our annotated
sentences, a suitable representation must be designed. For this
reason, from each annotated sentence, we create a Semantic-
Tree like the one in Fig. 2. The root of the tree is an arbitrary
symbol whereas the first level of the tree contains the concepts
of the sentence. Each node of the first level has children repre-
senting the concept chunked using markers B and I as described
in Section 2.1. Finally, the leaves of each subtree are the words
instantiating the corresponding concept.

Note that the tree in Fig. 2 is different from trees in Fig.
1. The first is a Semantic-Tree, while the others are syntactic
trees. Note that the semantic annotation we used to build our
trees is made upon syntactic chunking, so the semantic annota-
tion implicitly takes into account the syntactic structure of the
sentence.

Model MEDIA (CER) LUNA (CER)
Attr. Attr.-Value Attr. Attr.-Value

FST 13.7% 17.9% 23.2% 27.3%
CRF 11.5% 15.7% 20.4% 24.6%
SVM-RR 12.1% 16.4% 18.4% 22.5%

Table 3: Results of SLU experiments on MEDIA and LUNA
test set manual transcriptions

3. Experimental Setup
3.1. Corpora

We used two different speech corpora:
The Luna corpus is the first conversational spoken dialog

corpora including problem-solving interactions. Such conver-
sations are recorded from the software/hardware help-desk call-
center of one industry partner of the LUNA consortium [8]. The
data are organized in transcriptions and annotations of speech
based on a new multi-level protocol. Data acquisition is still
in progress. Currently, 250 dialogs acquired with a WOZ ap-
proach and 180 Human-Human (HH) dialogs are available. In
this work we used only WOZ dialogs. Statistics on LUNA cor-
pus are reported in Table 1.

The corpus MEDIA was collected within the French project
MEDIA-EVALDA [7] for development and evaluation of spo-
ken understanding models and linguistic studies. The corpus
is composed of 1,257 dialogs, from 250 different speakers, ac-
quired with a Wizard of Oz (WOZ) approach in the context of
hotel room reservations and tourist information. Statistics on
transcribed and conceptually annotated data are reported in Ta-
ble 2.

3.2. Experiments

Given the small size of LUNA WOZ corpus, we did not carried
out parameter optimization on a development set but we used
default or a priori parameters. We experimented with LUNA
WOZ and our re-ranker obtained by using SVMs with STK on
our semantic structures described in Section 2.

We trained all the SCLMs used in our experiments with the
SRILM toolkit [9] and we used an interpolated model for prob-
ability estimation with Kneser-Ney discount [10]. We then con-
verted the model in an FST using SRILM toolkit.

To train the re-ranker, we used the SVM-Light-TK toolkit
(available at dit.unitn.it/moschitti), which includes tree kernels
in SVM-Light [13].

We compared our results with a CRF model trained using
CRF++, a free tool available at http://crfpp.sourceforge.net/. In
particular our model was trained using features of the input sen-
tence like Word Categories and morpho-syntactic features as in
[14].

We ran SLU experiments on manual and automatic tran-
scriptions. The latter are produced by a speech recognizer with
a WER of 41.0% and 31.4% on the LUNA and the MEDIA test
sets, respectively.

4. Results
All the results of our experiments are reported in tables 3 and 4
in terms of Concept Error Rate (CER). CER is a measure based
on the Levensthein alignment of sentences and it is computed as
the ratio between inserted, deleted and confused concepts and
the number of concepts in the reference sentence.



Model MEDIA (CER) LUNA (CER)
Attr. Attr.-Value Attr. Attr.-Value

FST 28.6% 32.7% 42.7% 46.9%
CRF 24.0% 28.9% 41.8% 45.7%
SVM-RR 25.0% 29.7% 38.9% 43.4%

Table 4: Results of SLU experiments on MEDIA and LUNA
test set automatic transcriptions (WER 31.4% for MEDIA, 41%
for LUNA)

Table 3 shows the results of SLU experiments on the ME-
DIA and LUNA test sets using manual transcription of spoken
sentences. We note that the baseline models (FST and CRF)
using a small corpus like the one of LUNA show a larger error
rate. Thus the re-ranking approach can learn and correct many
mistakes, significantly outperforming CRF on both attribute and
attribute-value annotation (2% points and 2.1% points respec-
tively). The FSTs baseline of 23.2% is largely improved by the
re-ranking model of 4.9% points (21.1% relative improvement)
on attribute annotation.

In contrast, on a big corpus like MEDIA, the baseline mod-
els can be accurately learned thus less errors can be c̈orrected.̈
As a consequence, our re-ranking approach is a little less accu-
rate than the CRF model (0.6 and 0.7 percent points on attribute
and attribute-values, respectively), but it still improves the FSTs
baseline of 1.6% points (11.7% relative improvement).

The same behavior is reproduced for SLU experiments on
automatic transcriptions, shown in Table 4.

We note that on the LUNA corpus CRFs are more accu-
rate than FSTs (0.9% points on attributes and 1.2% points on
attribute-values), but they are significantly improved by the re-
ranking model (2.9% points on attributes and 2.3% points on
attribute-values), which yields an improvement of 3.8% points
on the FSTs baseline for attribute annotation.

On the MEDIA corpus, the re-ranking model is again very
accurate improving the FSTs baseline of 3.6% points (12.6%
relative improvement) on attribute annotation, but the most ac-
curate model is again CRF (1% points better than the re-ranking
model on attribute annotation).

The different behavior of the re-ranking model between the
LUNA and MEDIA corpora is due partially to the task com-
plexity (34 concepts in LUNA, 80 in MEDIA), but more to
the fact that CRFs have been studied and experimented more
in-dept (see [14]) than the re-ranking approach for this task.
This allowed the CRF parameters and features to be greatly
optimized. We believe that the re-ranking model can be rel-
evantly improved by carrying out parameter optimization and
new structural feature design.

It should be noted that some structural features for manual
transcription have been studied in [15]. However, in such work
no study on the robustness to the noisy ASR output has been
carried out. In this paper, we showed that our structural feature
(i.e. the semantic tree) is very effective for this output and that
re-ranking models based on SVMs and Tree Kernels are more
robust than CRF on small and novel corpora.

5. Conclusions
In this paper we proposed an approach to Spoken Language Un-
derstanding based on the joint use of a generative and a discrim-
inative model. This approach reaches state-of-the-art, i.e. CRF,
outperforming it on new corpora. The re-ranking model seems
to be particularly robust on automatic transcriptions since it is

more accurate than CRF on the LUNA corpus and it improves
significantly the FSTs baseline on the MEDIA corpus (12.6%
relative improvement). All the results obtained for this work,
and in particular the results on the MEDIA corpus, are partic-
ularly meaningful since the re-ranking model can be improved
along with different research lines, e.g. feature design, parame-
ter tuning. For future work we plan to carry out:

• Re-ranking of hypotheses generated with different mod-
els, similar to system combinations made with ROVER
in [14]

• To use more hypotheses for training/classification (we
only used 10 hypotheses for this work).

• To use different kernels and their combinations for train-
ing the re-ranker.
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