
Tree Kernels for Semantic Role Labeling

Alessandro Moschitti∗

University of Trento - DIT

Daniele Pighin∗∗

University of Trento - DIT, FBK-irst

Roberto Basili†

University of Rome Tor Vergata - DISP

The availability of large scale data sets of manually annotated predicate argument structures

has recently favored the use of Machine Learning approaches to the design of automated Semantic

Role Labeling (SRL) systems. The main research in this area relates to the design choices for

feature representation and for effective decompositions of the task in different learning models.

Regarding the former choice, structural properties of full syntactic parses are largely employed as

they represent ways to encode different principles suggested by the linking theory between syntax

and semantics. The latter choice relates to several learning schemes over global views of the

parses. For example, re-ranking stages operating over alternative predicate-argument sequences

of the same sentence have shown to be very effective.

In this paper, we propose several kernel functions to model parse tree properties in kernel-

based machines, e. g. Perceptrons or Support Vector Machines. In particular, we define different

kinds of tree kernels as general approaches to feature engineering in SRL. Moreover, we ex-

tensively experiment with such kernels to investigate their contribution on individual stages

of an SRL architecture both in isolation and in combination with other traditional manually-

coded features. The results on boundary recognition, classification and re-ranking stages provide

systematic evidence about the significant impact of tree kernels on the overall accuracy, especially

when the amount of training data is small. As a conclusive result, tree kernels allow for a general

and easily portable feature engineering method which is applicable to a large family of Natural

Language Processing tasks.

1. Introduction

Conspicuous attention has recently been devoted to the design of systems for the auto-
matic labeling of semantic roles (SRL) as defined in two important projects: FrameNet
(Baker, Fillmore, and Lowe 1998), based on Frame Semantics, and PropBank (Palmer,
Gildea, and Kingsbury 2005) inspired by Levin’s verb classes. To annotate natural
language sentences, such systems generally require (1) the detection of the target word
embodying the predicate and (2) the detection and classification of the word sequences
constituting the predicate arguments.

∗ Via Sommarive, 14 I-38050 Povo (TN). Email: moschitti@dit.unitn.it
∗∗ Via Sommarive, 18 I-38050 Povo (TN). Email: pighin@itc.it
† Via del Politecnico, 1 I-00133 RM. Email: basili@info.uniroma2.it

Submission received: 15 July 2006
Revised submission received: 01 May 2007
Accepted for publication: 19 June 2007

© 2007 Association for Computational Linguistics

Computational Linguistics Volume volume, Number number

Previous work has shown that the above steps can be carried out by applying
Machine Learning techniques (Carreras and Màrquez 2004, Carreras and Màrquez
2005, Litkowski 2004), for which the most important features encoding predicate argu-
ment relations are derived from (shallow or deep) syntactic information. The outcome
of this research brings wide empirical evidence in favor of the linking theories between
semantics and syntax, e. g. (Jackendoff 1990). Nevertheless, as no such theory provides
a sound and complete treatment, the choice and design of syntactic features to represent
semantic structures requires remarkable research effort and intuition.
For example, earlier studies on feature design for Semantic Role Labeling were

carried out in (Gildea and Jurafsky 2002, Thompson, Levy, and Manning 2003). Since
then, researchers have proposed several syntactic feature sets, where the more recent
set slightly enhanced the older ones.
A careful analysis of such features reveals that most of them are syntactic tree

fragments of training sentences, thus a viable way to alleviate the feature design com-
plexity is the adoption of syntactic tree kernels (Collins and Duffy 2002). For example,
in (Moschitti 2004), the predicate-argument relation is represented by means of the
minimal subtree that includes both of them. The similarity between two instances is
evaluated by a tree kernel function in terms of common substructures. Such approach
is in line with current research on kernels for natural language learning, e. g. syntactic
parsing re-ranking (Collins and Duffy 2002), relation extraction (Zelenko, Aone, and
Richardella 2003) and named entity recognition (Cumby and Roth 2003, Culotta and
Sorensen 2004).
Furthermore, recent work (Punyakanok et al. 2005, Haghighi, Toutanova, andMan-

ning 2005) has shown that, to achieve high labeling accuracy, joint inference should
be applied on the whole predicate argument structure. For this purpose, we need to
extract features from the sentence syntactic parse tree that encodes the relationships
governing complex semantic structures. This task is rather difficult since we do not
exactly know which syntactic clues effectively capture the relation between the pred-
icate and its arguments. For example, to detect the interesting context, the modeling
of syntax/semantics-based features should take into account linguistic aspects like
ancestor nodes or semantic dependencies (Toutanova, Markova, and Manning 2004).
In this scenario, the automatic feature generation/selection carried out by tree kernels
can provide useful insights on the underlying linguistic phenomena. Other advantages
coming from the use of tree kernels are the following:
First, we can implement them very quickly as the feature extractor module only

requires the writing of a general procedure for subtree extraction. In contrast, traditional
SRL systems use more than thirty features, e. g. (Pradhan et al. 2005a), each of which
requires the writing of a dedicated procedure.
Second, their combination with traditional attribute-value models produces more

accurate systems, also when using the same Machine Learning algorithm in the combi-
nation, since the feature spaces are very different.
Third, we can carry out feature engineering using kernel combinations andmarking

strategies (Moschitti et al. 2005a, Moschitti, Pighin, and Basili 2006). This allows us to
boost the SRL accuracy in a relatively simple way.
Next, tree kernels generate large tree fragment sets which constitute back-off mod-

els for important syntactic features. Using them, the learning algorithm generalizes
better and produces a more accurate classifier, especially when the amount of training
data is scarse.
Finally, once the learning algorithm using tree kernels has converged, we can iden-

tify the most important structured features of the generated model. One approach for

2

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

such reverse engineering process relies on the computation of the explicit feature space,
at least for the highest weighted features (Kudo and Matsumoto 2003). Once the most
relevant fragments are available, they can be used to design novel effective attribute-
value features (which in turn can be used to design more efficient classifiers, e. g. with
linear kernels) and inspire new linguistic theories.
The above points suggest that tree kernels should always be applied, at least for

an initial study of the problem. Unfortunately, they suffer from two main limitations:
(a) poor impact on boundary detection as, in this task, correct and incorrect arguments
may share a large portion of the encoding trees (Moschitti 2004); and (b) more expensive
running time and limited contribution to the overall accuracy if compared with manu-
ally derived features (Cumby and Roth 2003). Point (a) has been addressed in (Moschitti,
Pighin, and Basili 2006) by showing that a marking strategy of relevant parse-tree nodes
makes correct and incorrect subtrees for boundary detection quite different. Point (b)
can be tackled by studying approaches to kernel engineering that allow for the design
of efficient and effective kernels.
In this article, we provide a comprehensive study on the use of tree kernels for

Semantic Role Labeling. For such purpose, we define tree kernels based on the compo-
sition of two different feature functions: canonical mappings, which map sentence-parse
trees in tree structures encoding semantic information, and feature extraction functions,
which encode the previous trees in the actual feature space. The latter functions explode
the canonical trees in all their substructures and, in the literature, are usually referred
to as tree kernels. For instance, in (Collins and Duffy 2002, Vishwanathan and Smola
2002, Moschitti 2006a) different tree kernels extract different types of tree fragments.
Given the heuristic nature of canonical mappings, we studied their properties

by experimenting with them within Support Vector Machines and with the data set
provided by CoNLL-shared tasks (Carreras and Màrquez 2005). The results show that
carefully engineered tree kernels always boost the accuracy of the basic systems. Most
importantly, in complex tasks such as the re-ranking of semantic role annotations, they
provide an easy way to engineer new features which enhance the state-of-the-art on
SRL.
In the remainder of this article, Section 2 presents traditional architectures for

Semantic Role Labeling and the typical features proposed in literature. Tree kernels are
formally introduced in Section 3, whereas Section 4 describes our modular architec-
ture employing Support Vector Machines along with manually designed features, tree
kernels (feature extraction functions) and their combinations. Section 5 presents our
structured features (canonical mappings) inducing different kernels that we used for
different SRL subtasks. The extensive experimental results obtained on the boundary
recognition, role classification and re-ranking stages are presented in Section 6. Finally,
Section 7 summarizes the conclusions.

2. Automatic Shallow Semantic Parsing

The recognition of semantic structures within a sentence relies on lexical and syntactic
information provided by early stages of an NLP process, such as lexical analysis, part of
speech tagging and syntactic parsing. The complexity of the SRL task mostly depends
on two aspects: (a) the above information is generally noisy, i. e. in a real-world scenario
the accuracy and reliability of NLP subsystems are generally not very high; (b) the
lack of a sound and complete linguistic or cognitive theory about the links between
syntax and semantics does not allow an informed, deductive approach to the problem.
Nevertheless, the large amount of available lexical and syntactic information favors the

3

Computational Linguistics Volume volume, Number number

application of inductive approaches to the SRL task, which indeed is generally treated
as a combination of statistical classification problems.
The next sections define the SRL task more precisely and summarize the most

relevant work carried out to address the above two problems.

2.1 Problem Definition

Themost well known shallow semantic theories regard two different projects: PropBank
(Palmer, Gildea, and Kingsbury 2005) and FrameNet (Baker, Fillmore, and Lowe 1998).
The former is based on a linguistic model inspired by Levin’s verb classes (Levin
1993), focusing on the argument structure of verbs and on the alternation patterns that
describe movements of verbal arguments within a predicate structure. The latter refers
to the application of Frame Semantics (Fillmore 1968) in the annotation of predicate
argument structures based on frame elements (semantic roles). The above theories have
been investigated in two CoNLL shared tasks (Carreras and Màrquez 2004, Carreras
and Màrquez 2005) and a Senseval-3 evaluation (Litkowski 2004), respectively.
Given a sentence and a predicate word, an SRL system outputs an annotation of the

sentence in which the sequences of words that make up the arguments of the predicate
are properly labeled, e. g. :

[Arg0 He] got [Arg1 his money] [C-V back]1

in response to the input He got his money back. This processing requires that: (1) the
predicates within the sentence are identified and (2) the word sequences that span the
boundaries of each predicate argument are delimited and assigned the proper role label.
The first sub-task can be performed either using statistical methods or hand-crafting

lexical and syntactic rules. In the case of verbal predicates, it is quite easy to write
simple rules matching regular expressions built on POS tags. The second task is more
complex and is generally viewed as a combination of statistical classification problems:
the learning algorithms are trained to recognize the extension of predicate arguments
and the semantic role they play.

2.2 Models for Semantic Role Labeling

An SRL model and the resulting architecture are largely influenced by the kind of data
available for the task. As an example, a model relying on a shallow syntactic parser
would assign roles to chunks, whereas with a full syntactic parse of the sentence it
would be straightforward to establish a correspondence between nodes of the parse tree
and semantic roles. We focused on the latter as it has been shown to be more accurate
by the CoNLL 2005 shared task results.
According to the deep syntactic formulation, the classifying instances are pairs

of parse-tree nodes which dominate the exact span of the predicate and the target
argument. Such pairs are usually represented in terms of attribute-value vectors, where
the attributes describe properties of predicates, arguments and the way they are related.
There is large agreement on an effective set of linguistic features (Gildea and Jurafsky
2002, Pradhan et al. 2005a) that have been employed in the vast majority of SRL systems.
The most relevant features are summarized in Table 1.

1 In PropBank notation, Arg0 and Arg1 represent the logical subject and the logical object of the target
verbal predicate, respectively. C-V represents the particle of a phrasal-verb predicate.

4

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

Table 1
Standard linguistic features employed by most SRL systems.

Feature Name Description
Predicate Lemmatization of the predicate word
Path Syntactic path linking the predicate and an argument, e. g. NN↑NP↑VP↓VBX
Partial path Path feature limited to the branching of the argument
No-direction path Like Path, but without traversal directions
Phrase type Syntactic type of the argument node
Position Relative position of the argument with respect to the predicate
Voice Voice of the predicate, i. e. active or passive
Head word Syntactic head of the argument phrase
Verb subcategorization Production rule expanding the predicate parent node
Named entities Classes of named entities that appear in the argument node
Head word POS POS tag of the argument node head word (less sparse than Head word)
Verb clustering Type of verb→ direct object relation
Governing Category Whether the candidate argument is the verb subject or object
Syntactic Frame Position of the NPs surrounding the predicate
Verb sense Sense information for polysemous verbs
Head word of PP Enriched POS of prepositional argument nodes (e. g. PP-for, PP-in)
First and last word/POS First and last words and POS tags of candidate argument phrases
Ordinal position Absolute offset of a candidate argument within a proposition
Constituent tree distance Distance from the predicate with respect to the parse tree
Constituent features Description of the constituents surrounding the argument node
Temporal Cue Words Temporal markers which are very distinctive of some roles

Once the representation for the predicate-argument pairs is available, a multi-
classifier is used to recognize the correct node pairs, i. e. nodes associated with correct
arguments (given a predicate), and assign them a label (which is the label of the ar-
gument). This can be achieved by training a multi-classifier on N + 1 classes, where
the first N classes correspond to the different roles and the (N + 1)th is a NARG (non-
argument) class to which non-argument nodes are assigned.
A more efficient solution consists in dividing the labeling process in two steps:

boundary detection and argument classification. A Boundary Classifier (BC) is a binary
classifier that recognizes the tree nodes that exactly cover a predicate argument, i. e.
that dominate all and only the words that belong to target arguments. Then, such
nodes are classified by a Role Multi-classifier (RM) that assigns to each example the most
appropriate label. This two-step approach (Gildea and Jurafsky 2002) has the advantage
of only applying BC on all parse tree nodes. RM can ignore non-boundary nodes,
resulting in a much faster classification. Other approaches have extended this solution
and suggested other multi-stage classification models, e. g. (Moschitti et al. 2005b) in
which a four-step hierarchical SRL architecture is described.
After node labeling has been carried out, it is possible that the output of the argu-

ment classifier does not result in a consistent annotation, as the labeling scheme may
not be compatible with the underlying linguistic model. As an example, PropBank-
style annotations do not allow arguments to be nested. This happens when two or
more overlapping tree nodes, i. e. one dominating the other, are classified as positive
boundaries.
The simplest solution relies on the application of heuristics that take into account

the whole predicate argument structure to remove the incorrect labels, e. g. (Moschitti
et al. 2005a, Tjong Kim Sang et al. 2005). A much more complex solution consists in the
application of some joint inference model to the whole predicate argument structure,

5

Computational Linguistics Volume volume, Number number

as in (Pradhan et al. 2004). As an example, (Haghighi, Toutanova, and Manning 2005)
associate a posterior probability with each argument node role assignment, estimate the
likelihood of the alternative labeling schemes and employ a re-ranking mechanism to
select the best annotation.
Additionally, the most accurate systems of the CoNLL 2005 shared task (Pun-

yakanok et al. 2005, Pradhan et al. 2005b) use different syntactic views of the same
input sentence. This allows the SRL system to recover from syntactic parser errors:
for example, a propositional phrase specifying the direct object of the predicate would
be attached to the verb instead of the argument. This kind of errors prevents some
arguments of the proposition from being recognized, as: (1) there may not be a node
of the parse tree dominating (all and only) the words of the correct sequence; (2) a
badly attached tree node may invalidate other argument nodes, generating unexpected
overlapping situations.
The manual design of features which capture important properties of complete

predicate argument structures (also coming from different syntactic views) is quite
complex. Tree kernels are a valid alternative to manual design as the next sections point
out.

3. Tree Kernels

Tree kernels have been applied to reduce the feature design effort in the context of
several natural language tasks, e. g. syntactic parsing re-ranking (Collins and Duffy
2002), relation extraction (Zelenko, Aone, and Richardella 2003), named entity recog-
nition (Cumby and Roth 2003, Culotta and Sorensen 2004) and Semantic Role Labeling
(Moschitti 2004).
On the one hand, these studies show that the kernel ability to generate large feature

sets is useful to quickly model new and not well understood linguistic phenomena
in learning machines. On the other hand, they show that sometimes it is possible to
manually design features for linear kernels that produce higher accuracy and faster
computation time. One of the most important causes of such mixed behavior is the
inappropriate choice of kernel functions. For example, in (Moschitti, Pighin, and Basili
2006, Moschitti 2006a) several kernels have been designed and shown to produce dif-
ferent impacts on the training algorithms.
In the next sections, we briefly introduce the kernel trick and describe the subtree

(ST) kernel devised in (Vishwanathan and Smola 2002), the subset tree (SST) kernel de-
fined in (Collins and Duffy 2002) and the partial tree (PT) kernel proposed in (Moschitti
2006a).

3.1 Kernel Trick

The main concept underlying Machine Learning for classification tasks is the automatic
learning of classification functions based on examples labeled with the class informa-
tion. Such examples can be described by means of feature vectors in an n dimensional
space over the real numbers, i. e. ℜn. The learning algorithm uses space metrics over
vectors, e. g. the scalar product, to learn an abstract representation of all instances
belonging to the target class.
For example, Support Vector Machines are linear classifiers which learn a hyper-

plane f(~x) = ~w × ~x + b = 0, separating positive from negative examples. ~x is the feature
vector representation of a classifying object o, whereas ~w ∈ ℜn and b ∈ ℜ are parameters
learned from the data by applying the Structural Risk Minimization principle (Vapnik

6

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

1998). The object o is mapped to ~x via a feature function φ : O → ℜn, O being the set of
the objects that we want to classify. o is categorized in the target class only if f(~x) ≥ 0.
The kernel trick allows us to rewrite of the decision hyperplane as:

f(~x) =
(

∑

i=1..l

yiαi~xi

)

· ~x + b =
∑

i=1..l

yiαi~xi · ~x + b =
∑

i=1..l

yiαiφ(oi) · φ(o) + b = 0.

where yi is equal to 1 for positive examples and -1 for negative examples, αi ∈ ℜ with
αi ≥ 0, oi ∀i ∈ {1, .., l} are the training instances and the productK(oi, o) = 〈φ(oi) · φ(o)〉
is the kernel function associated with the mapping φ.
Note that we do not need to apply the mapping φ, we can use K(oi, o) directly.

This allows us, underMercer’s conditions (Shawe-Taylor and Cristianini 2004), to define
abstract kernel functions which generate implicit feature spaces. A traditional example
is given by the polynomial kernel: Kp(o1, o2) = (c + ~x1 · ~x2)

d, where c is a constant and
d is the degree of the polynomial. This kernel generates the space of all conjunctions of
feature groups up to d elements.
Additionally, we can carry out two interesting operations:

r kernel combinations, e. g.K1 + K2 or K1 × K2, and
r feature mapping compositions, e. g.

K(o1, o2) = 〈φ(o1) · φ(o2)〉 = 〈φB(φA(o1)) · φB(φA(o2))〉.

Kernel combinations are very useful to integrate the knowledge provided by the
manually defined features with the one automatically obtained with structural kernels;
featuremapping compositions are usefulmethods to describe diverse kernel classes (see
Section 5). In this perspective, we propose to split the mapping φ by defining our tree
kernel as follows:

r Canonical Mapping, φM (), in which a linguistic object, e. g. a syntactic parse
tree, is transformed into a more meaningful structure, e. g. the subtree
corresponding to a verb subcategorization frame.

r Feature Extraction, φS(), which maps the canonical structure in all its
fragments according to different fragment spaces S, e. g. ST, SST and PT.

For example, given the kernel KST = φST (o1) · φST (o2), we can apply a canon-
ical mapping φM (), obtaining KM

ST = φST (φM (o1)) · φST (φM (o2)) =
(

φST ◦ φM

)

(o1) ·
(

φST ◦ φM

)

(o2), which is a noticeably different kernel induced by the mapping
(

φST ◦

φM

)

.
In the remainder of this section we start the description of our engineered kernels

by defining three different feature extraction mappings based on three different kernel
spaces, i. e. ST, SST and PT.

3.2 Tree kernel Spaces

The kernels that we consider represent trees in terms of their substructures (fragments).
The kernel function detects if a tree subpart (common to both trees) belongs to the
feature space that we intend to generate. For such purpose, the desired fragments
need to be described. We consider three main characterizations: the subtrees (STs)
(Vishwanathan and Smola 2002), the subset trees (SSTs) or all subtrees (Collins and
Duffy 2002) and the partial trees (PTs) (Moschitti 2006a).

7

Computational Linguistics Volume volume, Number number

S

N

NP

D N

VP

V Mary

brought

a cat

NP

D N

a cat

N

 cat

D

a

V

brought

N

Mary

NP

D N

VP

V

brought

a cat

(a) STs

NP

D N

a cat

NP

D N

NP

D N

a

NP

D N

NP

D N

VP

V

brought

a cat

 cat
NP

D N

VP

V

a cat

NP

D N

VP

V

N

 cat

D

a

V

brought

N

Mary
…

(b) SSTs

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NP NP

D N D

NP

…

VP

(c) PTs

Figure 1
Example of ST (a), SST (b) and PT (c) fragments.

As we consider syntactic parse trees, each node with its children is associated with
a grammar production rule, where the symbol at the left-hand side corresponds to the
parent and the symbols at the right-hand side are associated with the children. The
terminal symbols of the grammar are always associated with tree leaves.
A subtree (ST) is defined as a tree rooted in any non-terminal node along with all

its descendants. For example, Figure 1(a) shows the parse tree of the sentence Mary
brought a cat together with its six STs. A subset tree (SST) is a more general structure
since its leaves can be non-terminal symbols. For example, Figure 1(b) shows ten SSTs
(out of 17) of the subtree in Frame (a) rooted in VP. SSTs satisfy the constraint that
grammatical rules cannot be broken. For example, [VP [V NP]] is an SST which has
two non-terminal symbols, V and NP, as leaves. On the contrary, [VP [V]] is not an
SST as it violates the production VP→V NP. If we relax the constraint over the SSTs, we
obtain a more general form of substructures that we call partial trees (PTs). These can be
generated by the application of partial production rules of the grammar, consequently
[VP [V]] and [VP [NP]] are valid PTs. It is worth to note that PTs consider the
position of the children as, for example, [A [B][C][D]] and [A [D][C][B]] only
share the single children, i.e. [A [B]], [A [C]] and [A [D]].
Figure 1(c) shows that the number of PTs derived from the same tree as before is

still higher (i. e. 30 PTs). These numbers provide an intuitive quantification of different
degrees of information encoded by each representation.

3.3 Feature Extraction Functions

The main idea underlying tree kernels is to compute the number of common substruc-
tures between two trees T1 and T2 without explicitly considering the whole fragment
space. In the following, we report the SubSet Tree (SST) kernel proposed in (Collins and
Duffy 2002). The algorithms to efficiently compute it along with the ST and PT kernels
can be found in (Moschitti 2006a).
Given two trees T1 and T2, let {f1, f2, ..} = F be the set of substructures (fragments)

and Ii(n) be equal to 1 if fi is rooted at node n, 0 otherwise. Collins and Duffy’s kernel
is defined as

8

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

K(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2), (1)

where NT1
and NT2

are the sets of nodes in T1 and T2, respectively and ∆(n1, n2) =
∑|F|

i=1 Ii(n1)Ii(n2). The latter is equal to the number of common fragments rooted in
nodes n1 and n2. ∆ can be computed as follows:

1. if the productions (i.e. the nodes with their direct children) at n1 and n2 are
different then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the same, and n1 and n2 only have leaf
children (i.e. they are pre-terminal symbols) then ∆(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not

pre-terminals then ∆(n1, n2) =
∏nc(n1)

j=1 (1 + ∆(cj
n1

, cj
n2

)), where nc(n1) is

the number of children of n1 and cj
n is the j-th child of n.

Such tree kernel can be normalized and a λ factor can be added to reduce the weight
of large structures (refer to (Collins and Duffy 2002) for a complete description).

3.4 Related Work

Although literature on SRL is extensive, there is almost no study on the use of tree
kernels for its solution. Consequently, the reported research is mainly based on diverse
natural language learning problems tackled by means of tree kernels.
In (Collins and Duffy 2002), the SST kernel was experimented with the Voted

Perceptron for the parse tree re-ranking task. A combination with the original PCFG
model improved the syntactic parsing. Another interesting kernel for re-ranking was
defined in (Toutanova, Markova, andManning 2004). This represents parse trees as lists
of paths (leaf projection paths) from leaves to the top level of the tree. It is worth noting
that the PT kernel includes tree fragments identical to such paths.
In (Kazama and Torisawa 2005), an interesting algorithm that speeds up the average

running time is presented. Such algorithm looks for node pairs in which are rooted
subtrees that share many sibstructures (malicious nodes) and applies a transformation to
the trees rooted in such nodes to make the kernel computation faster. The results show
an increase of the speed of hundreds of times with respect to the basic implementation.
In (Zelenko, Aone, and Richardella 2003), two kernels over syntactic shallow parser

structures were devised for the extraction of linguistic relations, e. g. person-affiliation.
To measure the similarity between two nodes, the contiguous string kernel and the sparse
string kernel were used. In (Culotta and Sorensen 2004) such kernels were slightly
generalized by providing a matching function for the node pairs. The time complexity
for their computation limited the experiments on a data set of just 200 news items.
In (Shen, Sarkar, and Joshi 2003), a tree-kernel based on Lexicalized Tree Adjoining

Grammar (LTAG) for the parse re-ranking task was proposed. The subtrees induced by
such kernel are built using the set of elementary trees as defined by LTAG.
In (Cumby and Roth 2003), a feature description language was used to extract struc-

tured features from the syntactic shallow parse trees associated with named entities.
Their experiments on named entity categorization showed that when the description
language selects an adequate set of tree fragments the Voted Perceptron algorithm
increases its classification accuracy. The explanationwas that the complete tree fragment
set contains many irrelevant features and may cause overfitting.
In (Zhang, Zhang, and Su 2006), convolution tree kernels for Relation Extraction

were applied in a way similar to the one proposed in (Moschitti 2004). The combina-

9

Computational Linguistics Volume volume, Number number

tion of standard features along with several tree subparts, tailored according to their
importance for the task, produced again an improvement on the state-of-the-art.
Such previous work as well as the above sections show that tree kernels can effi-

ciently represent syntactic objects, e. g. constituent parse trees, in huge feature spaces.
The next section describes our Semantic Role Labeling system adopting tree kernels
within Support Vector Machines.

4. A State-of-the-Art Architecture for Semantic Role Labeling

Ameaningful study of tree kernels for SRL cannot be carried out without a comparison
with a state-of-the-art architecture: kernel models that improve average performing
systems are a just technical exercise whose findings would have a reduced value. A
state-of-the-art architecture, instead, can be used as a basic system upon which tree
kernels should improve. Since kernel functions in general introduce a sensible slow
down with respect to the linear approach, we also have to consider efficiency issues.
These aims drove us in choosing the following components for our SRL system:

r Support Vector Machines (SVMs) as our learning algorithm; these provide
both a state-of-the-art learning model (in terms of accuracy) and the
possibility of using kernel functions;

r a two-stage role labeling module to improve learning and classification
efficiency. This comprises:
– a feature extractor that can represent candidate arguments using

both linear and structured features;
– a boundary classifier (BC);
– a role multi-classifier (RM), which is obtained by applying the OVA

(One vs All) approach;

r a conflict resolution module, i. e. a software component that resolves
inconsistencies in the annotations using either a rule based approach or a
tree kernel classifier. The latter is interesting to experiment with the
classification of complete predicate argument annotations in correct and
incorrect structures;

r a joint inference re-ranking module, which employs a combination of
standard features and tree kernels to rank alternative candidate labeling
schemes for a proposition. This module, as shown in (Gildea and Jurafsky
2002, Pradhan et al. 2004, Haghighi, Toutanova, and Manning 2005), is
mandatory in order to achieve state-of-the-art accuracy.

We point out that we did not use any heuristic to filter out the nodes which are likely
to be incorrect boundaries, e.g. as done in (Xue and Palmer 2004). On the one hand, this
makes the learning and classification phases more complex since they involve more
instances. On the other hand, our results are not biased by the quality of the heuristics,
leading to more meaningful findings.
In the remainder of this section, we describe the main functional modules of our

architecture for SRL and introduce some basic concepts about the use of structured
features for SRL. Specific feature engineering for the above SRL subtasks is described
and discussed in Section 5.

10

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

S

NP

PRP

John

VP

VP

VB

took

NP

DT

the

NN

book

CC

and

VP

VB

read

NP

PRP$

its

NN

title

(a)

S

NP

PRP

John

VP

VP

VB

took

NP

DT

the

NN

book

CC

and

VP

VB

read

NP

PRP$

its

NN

title

(b)

Figure 2
Positive (framed) and negative (unframed) examples of candidate argument nodes for the
propositions (a) [Arg0 John] took [Arg1 the book] and read its title and (b) [Arg0 John] took the book and
read [Arg1 its title].

4.1 A Basic Two-Stage Role Labeling System

Given a sentence in natural language, our SRL system identifies all the verb predicates
and their respective arguments. We divide this step in three subtasks: (a) predicate
detection which can be carried out by simple heuristics based on part of speech infor-
mation, (b) the detection of predicate argument boundaries, i. e. the span of their words
in the sentence, and (c) the classification of the argument type, e. g. Arg0 or ArgM in
PropBank.
The standard approach to learn both the detection and the classification of predicate

arguments is summarized by the following steps:

1. Given a sentence from the training-set, generate a full syntactic parse-tree;

2. let P and A be the set of predicates and the set of parse-tree nodes (i. e. the
potential arguments), respectively;

3. for each pair 〈p, a〉 ∈ P ×A:
r extract the feature representation, φ(p, a), e. g. attribute-values or
tree fragments (see Section 3.1);

r if the leaves of the subtree rooted in a correspond to all and only
the words of one argument of p (i. e. a exactly covers an argument),
add φ(p, a) in E+ (positive examples), otherwise add it in E−

(negative examples).

For instance, given the example in Figure 2(a) we would consider all the pairs 〈p, a〉
where p is the node associated with the predicate took and a is any other tree node not
overlapping with p. If the node a exactly covers the word sequences John or the book,
then φ(p, a) is added to the set E+, otherwise it is added to E−, as in the case of the
node (NN book).
The E+ and E− sets are used to train the boundary classifier. To train the role

multiclassifier, the elements of E+ can be reorganized as positive E+
argi
and negative

E−
argi
examples for each role type i. In this way, a binary ONE-vs-ALL classifier for each

argument i can be trained. We adopted this solution following (Pradhan et al. 2005a)
since it is simple and effective. In the classification phase, given an unseen sentence,
all the pairs 〈p, a〉 are generated and classified by each individual role classifier Ci.

11

Computational Linguistics Volume volume, Number number

The argument label associated with the maximum among the scores provided by Ci

is eventually selected.
The feature extraction function φ can be implemented according to different linguis-

tic theories and intuitions. From a technical point of view, we can use φ to map 〈p, a〉 in
feature vectors or in structures to be used in a tree kernel function. The next section
describes our choices in more detail.

4.2 Linear and Structured Representation

Our feature extractor module and our learning algorithms are designed to cope with
both linear and structured features, used for the different stages of the SRL process.
The standard features that we adopted are shown in Table 1. They include:

r the Phrase Type, Predicate Word, Head Word, Governing Category, Position and
Voice defined in (Gildea and Jurafsky 2002);

r the Partial Path, No Direction Path, Constituent Tree Distance, Head Word
POS, First and Last Word/POS, Verb Subcategorization and Head Word of the
Noun Phrase in the Prepositional Phrase proposed in (Pradhan et al. 2005a);

r the Syntactic Frame designed in (Xue and Palmer 2004).

We indicate with structured features the basic syntactic structures extracted from
the sentence-parse tree or their canonical transformation (see Section 3.1). In particular,
we focus on the minimal spanning tree that includes the predicate along with all of its
arguments.
More formally, given a parse tree t, a node set spanning tree (NST) over a set of nodes

Nt = {n1, . . . , nk} is a partial tree of t that (1) is rooted at the deepest level and (2)
contains all and only the nodes ni ∈ Nt, along with their ancestors and descendants.
An NST can be built as follows: for any choice of Nt, we call r the lowest common
ancestor of n1, . . . , nk. Then, from the set of all the descendants of r, we remove all the
nodes nj that: (1) do not belong to Nt; (2) are neither ancestors nor descendants of any
node belonging to Nt.
Since predicate arguments are associatedwith tree nodes, we can define the predicate

argument spanning tree (ASTn) of a predicate argument node set Ap = {a1, . . . , an} as
the NST over these nodes and the predicate node, i. e. the node exactly covering the
predicate p2. An ASTn corresponds to theminimal parse subtree whose leaves are all and
only the word sequences belonging to the arguments and the predicate. For example,
Figure 3(a) shows the parse tree of the sentence: John took the book and read its title.
took{ARG0,ARG1} and read{ARG0,ARG1} are two ASTn structures associated with the two
predicates took and read, respectively, and are shown in Frames (b) and (c) of Figure 3.
For each predicate, only one NST is a valid ASTn. Carefulmanipulations of an ASTn

can be employed for those tasks that require a representation of the whole predicate
argument structure, e. g. overlap resolution or proposition re-ranking.
It is worth to note that the predicate argument feature, or PAF in (Moschitti 2004) is

a canonical transformation of the ASTn in the subtree including the predicate p and
only one of its arguments. For the sake of uniform notation, PAF will be referred to as
AST1 (argument spanning tree), the subscript 1 stressing the fact that the structure only

2 The ASTn of a predicate p and its argument nodes {a1, . . . , an}, will also be referred to as p{a1,...,an}.

12

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

S

NP

PRP

John

VP

VP

VB

took

NP

DT

the

NN

book

CC

and

VP

VB

read

NP

PRP$

its

NN

title

(a) Sentence parse tree

S

NP

PRP

John

VP

VP

VB

took

NP

DT

the

NN

book

(b) took{Arg0,Arg1}

S

NP

PRP

John

VP

VP

VB

read

NP

PRP$

its

NN

title

(c) read{Arg0,Arg1}

VP

VB

read

NP

PRP$

its

NN

title

(d) read{Arg1}

Figure 3
A sentence parse tree (a), the correct ASTns associated with two different predicates (b,c) and a
correct AST1 relative to the argument Arg1 its title of the predicate read.

encompasses one of the predicate arguments. An example AST1 is shown in Figure 3(d).
Manipulations of an AST1 structure can lead to interesting tree kernels for local learning
tasks, such as boundary detection and argument classification.
Regardless of the adopted feature space, our multiclassification approach suffers

from the problem of selecting both boundaries and argument roles independently of
the whole structures. Thus, it is possible that (a) two labeled nodes refer to the same
arguments (node overlaps) and (b) invalid role sequences are generated, e. g.Arg0, Arg0,
Arg0, Next, we describe our approach to solve such problems.

4.3 Conflict Resolution

We call a conflict, or ambiguity, or overlap resolution a stage of the SRL process which
resolves annotation conflicts that invalidate the underlying linguistic model. This hap-
pens, for example, when both a node and one of its descendants are classified as positive
boundaries, i. e. they received a role label.We say that such nodes are overlapping as their
leaf (i. e. word) sequences overlap. Since this situation is not allowed by the PropBank
annotation definition, we need a method to select the most appropriate word sequence.
Our system architecture can employ one of three different disambiguation strategies:

r a basic solution which, given two overlapping nodes, randomly selects
one to be removed;

r the following heuristics:
1. the node causing the major number of overlaps is removed, e. g. a

node which dominates two nodes labeled as arguments;
2. core arguments (i. e. arguments associated with the

subcategorization frame of the target verb) are always preferred
over adjuncts (i. e. arguments that are not specific to verbs or verb
senses);

3. in case the above two rules do not eliminate all conflicts, the nodes
located deeper in the tree are discarded;

r a tree-kernel based overlap resolution strategy consisting of an SVM
trained to recognize non-clashing configurations that often correspond to
correct propositions.

13

Computational Linguistics Volume volume, Number number

The latter approach consists of:
(1) a software module that generates all the possible non-overlapping configura-

tions of nodes. These are built using the output of the local node classifiers by generating
all the permutations of argument nodes of a predicate and removing the configurations
that contain at least one overlap;
(2) an SVM trained on such non overlapping configurations, where the positive

examples are correct predicate argument structures (although eventually not complete)
and negative ones are not. At testing time, we classify all the alternative non-clashing
configurations. In case more than one structure is selected as correct, we choose the one
associated with the highest SVM score.
These disambiguationmodules can be invoked after either the BC or the RM classifi-

cation. The different information available after each phase can be used to design differ-
ent kinds of features. For example, the knowledge of the candidate role of an argument
node can be a key issue in the design of effective conflict resolution methodologies,
e. g. by eliminating ArgX , ArgX , ArgX , . . . sequences. Such different approaches are
discussed in Section 5.2.
The next section describes a more advanced approach that can eliminate overlaps

and choose the most correct annotation for a proposition among a set of alternative
labeling schemes.

4.4 A Joint Model for Re-ranking

The heuristics considered in the previous sections only act when a conflict is detected.
In a real situation, many incorrect annotations are generated with no overlaps. To deal
with such cases, we need a re-ranking module based on a joint BC and RM model as
suggested in (Haghighi, Toutanova, and Manning 2005). Such model is based on (1) an
algorithm to evaluate the most likely labeling schemes for a given predicate and (2) a
re-ranker that sorts the labeling schemes according to their correctness.
Step 1 uses the probabilities associated with each possible annotation of parse tree

nodes, hence requiring a probabilistic output from BC and RM. As the SVM learning
algorithm produces metric values, we applied Platt’s algorithm (Platt 1999) to convert
them into probabilities, as already proposed in (Pradhan et al. 2005c). These posterior
probabilities are then combined to generate the N labelings that maximize a likelihood
measure. Step 2 requires the training of an automatic re-ranker. This can be designed
using a binary classifier that, given two annotations, decideswhich one is more accurate.
We modeled such classifier by means of three different kernels based on standard
features, structured features and their combination.

4.4.1 Evaluation of the N best annotations. First, we converted the output of each
node-classifier into a posterior probability conditioned by its output scores (Platt 1999).
This method uses a parametric model to fit onto a sigmoid distribution the posterior
probability P (y = 1, f), where f is the output of the classifier and the parameters are
dynamically adapted to give the best probability output3. Second, we select the N most
likely sequences of node labelings. Given a predicate, the likelihood of a labeling scheme

3 We actually implemented the pseudo-code proposed in (Lin, Lin, and Weng 2003) which, with respect to
Platt’s original formulation, is theoretically demonstrated to converge and avoids some numerical
difficulties that may arise.

14

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

(or state) s for the K candidate argument nodes is given by:

p(s) =

K
∏

i=1

p′i(l), p′i(l) =

{

pi(li)pi(ARG) if li 6= NARG
(1 − pi(ARG))2 otherwise

(2)

where pi(l) is the probability of node i being assigned the label l, and p′i(l) is the same
probability weighted by the probability pi(ARG) of the node being an argument. If l =
NARG (not an argument) then both terms evaluate to (1 − pi(ARG)) and the likelihood
of the NARG label assignment is given by (1 − pi(ARG))2.
To select theN states associated with the highest probability, we cannot evaluate the

likelihood of all possible states since they are an exponential number. In order to reduce
the search space we (a) limit the number of possible labelings of each node to M and
(b) avoid traversing all the states by applying a Viterbi algorithm to search for the most
likely labeling schemes. From each state we generate the states in which a candidate
argument is assigned different labels. This operation is bound to output atmostN states
which are generated by traversing a maximum ofN × M states. Therefore, in the worst
case scenario the number of traversed states is V = N × M × K , K being the number
of candidate argument nodes in the tree.
During the searchwe also enforce overlap resolution policies. Indeed, for any given

state in which a node nj is assigned a label l 6= NARG, we generate all and only the
states in which all the nodes that are dominated by nj are assigned the NARG label.

4.4.2 Modeling an Automatic Re-ranker. The Viterbi algorithm generates the N most
likely annotations for the proposition associated with a predicate p. These can be used
to build annotation pairs, 〈si, sj〉, which, in turn, are used to train a binary classifier that
decides if si is more accurate that sj . Each candidate proposition si can be described
by a structured feature ti and a vector of standard features vi. As a whole, an example
ei is described by the tuple 〈t1i , t

2
i , v

1
i , v2

i 〉, where t1i and v1
i refer to the first candidate

annotation, while t2i and v2
i refer to the second one. Given such data, we can define the

following re-ranking kernels:

Ktr(e1, e2) = Kt(t
1
1, t

1
2) + Kt(t

2
1, t

2
2) − Kt(t

1
1, t

2
2) − Kt(t

2
1, t

1
2)

Kpr(e1, e2) = Kp(v
1
1 , v

1
2) + Kp(v

2
1 , v2

2) − Kp(v
1
1 , v2

2) − Kp(v
2
1 , v1

2) ,

whereKt is one of the tree kernel functions defined in Section 3 andKp is a polynomial
kernel applied to the feature vectors. The final kernel that we use is the following
combination:

K(e1, e2) =
Ktr(e1, e2)

|Ktr(e1, e2)|
+

Kpr(e1, e2)

|Kpr(e1, e2)|
.

The above sections have shown how our SRL architecture exploits tree kernel
functions to a large extent. In the next section, we describe in more detail our structured
features and the engineering methods applied for the different subtasks of the SRL
process.

5. Structured Feature Engineering

Structured features are an effective alternative to standard features under many aspects.
An important advantage is that the target feature space can be utterly changed even

15

Computational Linguistics Volume volume, Number number

S

NP

NNP

Paul

VP

VBZ

delivers

NP

NP

DT

a

NN

talk

PP

IN

in

NP

JJ

formal

NN

styleArg0

Arg1

Figure 4
Parse tree of the example proposition [Arg0 Paul] delivers [Arg1 a talk in formal style].

by small modifications of the applied kernel function. This can be exploited to identify
features relevant to learning problems lacking a clear and sound linguistic or cognitive
justification.
As shown in Section 3.1, a kernel function is a scalar product φ(o1) · φ(o2), where φ

is a mapping in an Euclidean space, and o1 and o2 are the target data, e. g. parse trees. To
make the engineering process easier, we decompose φ in a canonical mapping, φM , and a
feature extraction function, φS , over the set of incoming parse trees. φM transforms a tree
into a canonical structure equivalent to an entire class of input parses while φS shatters
an input tree into its subparts (e. g. subtrees, subset trees or partial trees as described in
Section 3). A large number of different feature spaces can thus be explored by suitable
combinations φ = φS ◦ φM of mappings.
We study different canonicalmappings to capture syntactic/semantic aspects useful

for SRL. In particular, we define structured features for the different phases of the
SRL process, i. e. Boundary Detection, Argument Classification, Conflict Resolution and
Proposition Re-ranking.

5.1 Structures for Boundary Detection and Argument Classification

The AST1 or PAF structures, already mentioned in Section 4.2, have shown to be very
effective for argument classification but not for boundary detection. The reason is that
two nodes that encode correct and incorrect boundaries may generate very similar
AST1s and, consequently, have many fragments in common. To solve this problem, we
specify the node that exactly covers the target argument node by simply marking it (or
marking all its descendants) with the label B, denoting the boundary property.
For example, Figure 4 shows the parse tree of the sentence Paul delivers a talk in

formal style, highlighting the predicate with its two arguments, i. e. Arg0 and Arg1.
Figure 5 shows the AST1 , ASTm1 and AST

cm
1 , i. e. the basic structure, the structure with

the marked argument node and the completely marked structure, respectively.
To understand the usefulness of node-marking strategies, we can examine Figure

6. This reports the case in which a correct and an incorrect argument node are chosen
by also showing the corresponding AST1 and ASTm1 representations (frames (a) and
(b)). Frame (c) shows that the number of common fragments of two AST1 structures

16

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

VP

VBZ

delivers

NP

NP

DT

a

NN

talk

PP

IN

in

NP

JJ

formal

NN

style

(a) AST1

VP

VBZ

delivers

NP-B

NP

DT

a

NN

talk

PP

IN

in

NP

JJ

formal

NN

style

(b) ASTm1

VP

VBZ

delivers

NP-B

NP-B

DT-B

a

NN-B

talk

PP-B

IN-B

in

NP-B

JJ-B

formal

NN-B

style

(c) ASTcm1

Figure 5
AST1 (a), AST

m
1 (b) and AST

cm
1 (c) structures relative to the argument Arg1 a talk in formal style of

the predicate delivers of the example parse tree shown in Figure 4.

is 14. This is much larger than the number of common ASTm1 fragments, i. e. only 3
substructures (Frame (d)).
Additionally, since the type of a target argument strongly depends on the type and

number of the other predicate arguments4 (Toutanova, Haghighi, and Manning 2005,
Punyakanok et al. 2005), we should extract features from the whole predicate argument
structure. In contrast, AST1s completely neglect the information (i. e. the tree portions)
related to non-target arguments.
One way to use this further information with tree kernels is to use the minimum

subtree that spans all the predicate argument structures, i. e. the ASTn defined in Section
4.2. However, ASTns pose two problems:
First, we cannot use them for the boundary detection task since we do not know

the predicate argument structure yet. We can derive the ASTn (its approximation) from
the nodes selected by a boundary classifier, i. e. the nodes that correspond to potential
arguments. Such approximated ASTns can be easily used in the argument classification
stage.
Second, an ASTn is the same for all the arguments in a proposition, thus we need a

way to differentiate it for each target argument. Again, we canmark the target argument
node as shown in the previous section. We refer to this subtree as a marked target ASTn

(ASTmtn). However, for large arguments (i. e. spread on a large part of the sentence tree)
the substructures’ likelihood of being part of different arguments is quite high.
To address this problem, we can mark all the nodes that descend from the target

argument node. We refer to this structure as a completely marked target ASTn (ASTcmtn).
ASTcmtn s may be seen as AST1s enriched with new information coming from the other
arguments (i. e. the non-marked subtrees). Note that if we only consider the AST1

subtree from a ASTcmtn we obtain ASTcm1 .

4 This is true at least for core arguments.

17

Computational Linguistics Volume volume, Number number

AST1+

VP

VBZ

delivers

NP

NP

DT

a

NN

talk

PP

IN

in

NP

JJ

formal

NN

style

AST1-

VP

VBZ

delivers

NP

NP

DT

a

NN

talk

(a) AST1 positive and negative examples

ASTm1 +

VP

VBZ

delivers

NP-B

NP

DT

a

NN

talk

PP

IN

in

NP

JJ

formal

NN

style

ASTm1 -

VP

VBZ

delivers

NP

NP-B

DT

a

NN

talk

(b) ASTm1 positive and negative examples

VP

VBZ NP

VP

VBZ

delivers

NP

VBZ

delivers

NP

NP

NP

NP

DT NN

NP

DT NN

NP

NP

DT

a

NN

NP

DT

a

NN

NP

NP

DT NN

talk

NP

DT NN

talk

NP

NP

DT

a

NN

talk

NP

DT

a

NN

talk

DT

a

NN

talk

(c) AST1 common fragments space

VBZ

delivers

DT

a

NN

talk

(d) ASTm1
common
fragments space

Figure 6
AST1s (a) and AST

m
1 s (b) extracted for the same target argument with their respective common

fragment spaces (c,b).

5.2 Structured Features for Conflict Resolution

This section describes structured features employed by the tree kernel based conflict
resolution module of the SRL architecture described in Section 4.3. Such subtask is
performed by means of:

1. a first annotation of potential arguments using a high recall boundary
classifier and, eventually, the role information provided by a role
multiclassifier (RM);

2. an ASTn classification step aiming at selecting, among the substructures
that do not contain overlaps, those that are more likely to encode the
correct argument set.

The set of argument nodes recognized by BC can be associated with a subtree of the
corresponding sentence parse, which can be classified using tree kernel functions. These
should evaluate whether a subtree encodes a correct predicate argument structure or
not. As it encodes features from the whole predicate argument structure, the ASTn that
we introduced in Section 4.2 is a structure that can be employed for this task.
Let Ap be the set of potential argument nodes for the predicate p output by BC; the

classifier examples are built as follows: (1) we look for node pairs 〈n1, n2〉 ∈ Ap × Ap

where n1 is the ancestor of n2 or vice versa; (2) we create two node sets A1 = A − {n1}
and A2 = A − {n2} and classify the two NSTs associated with A1 and A2 with the tree

18

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

S

NP

John

VP

VB

read

NP

NP

DT

the

NN

title

PP

IN

of

NP

DT

the

NN

book

(a) Overlapping
nodes

S

NP

John

VP

VB

read

NP

NP

DT

the

NN

title

PP

IN

of

NP

DT

the

NN

book

S

NP

John

VP

VB

read

NP

NP

DT

the

NN

title

PP

IN

of

NP

DT

the

NN

book

(b) Candidate ASTns

S

NP-0

John

VP

VB

read

NP-1

NP

DT

the

NN

title

PP

IN

of

NP

DT

the

NN

book

S

NP-0

John

VP

VB

read

NP

NP-1

DT

the

NN

title

PP-2

IN

of

NP

DT

the

NN

book

(c) Candidate ASTordn s

S

NP-A0

John

VP

VB

read

NP-A1

NP

DT

the

NN

title

PP

IN

of

NP

DT

the

NN

book

S

NP-A0

John

VP

VB

read

NP

NP-A1

DT

the

NN

title

PP-A4

IN

of

NP

DT

the

NN

book

(d) Candidate ASTmn s

Figure 7
An overlap situation (a) and the candidate solutions resulting from the employment of the
different marking strategies.

kernel classifier to select the most correct set of argument boundaries. This procedure
can be generalized to a set of overlapping nodes O with more than 2 elements, as we
simply need to generate all and only the permutations of A’s nodes that do not contain
overlapping pairs.
Figure 7 shows a working example of such a multi-stage classifier. In (a), the BC

labels as potential arguments four nodes (circled), three of which are overlapping (in
bold circles). The overlap resolution algorithm proposes two solutions (b) of which only
one is correct. In fact, according to the second solution, the propositional phrase of the
bookwould incorrectly be attached to the verbal predicate, i. e. in contrast with the parse
tree. The ASTn classifier, applied to the two NSTs, should detect this inconsistency and
provide the correct output. Figure 7 also highlights a critical problem the ASTn classifier
has to deal with: as the two NSTs are perfectly identical, it is not possible to distinguish
between them using only their fragments.
The solution to engineer novel features is to simply add the boundary information

provided by BC to the NSTs. We mark with a progressive number the phrase type
corresponding to an argument node, starting from the leftmost argument. We call the
resulting structure an Ordinal Predicate Argument Spanning Tree (ASTordn). For exam-
ple, in the first NST of Figure 7(c), we mark as NP-0 and NP-1 the first and second
argument nodes, whereas in the second NST, we have a hypothesis of three arguments
on three nodes that we transform as NP-0, NP-1 and PP-2.
This simplemodification enables the tree kernel to generate features useful to distin-

guish between two identical parse trees associated with different argument structures.
For example, for the first NST the fragments [NP-1 [NP PP]], [NP [DT NN]] and
[PP [IN NP]] are generated. They do not match any longer with the fragments of the
second NST [NP-0 [NP PP]], [NP-1 [DT NN]] and [PP-2 [IN NP]].
We also experimentedwith another structure, themarked predicate argument spanning

tree (ASTmn), in which each argument node is marked with a role label assigned by a

19

Computational Linguistics Volume volume, Number number

S

NP-A0

NNP-A0

Paul

VP

VBZ

delivers

NP-A1

NP-A1

DT-A1

a

NN-A1

talk

PP-A1

IN-A1

in

NP-A1

JJ-A1

formal

NN-A1

style

(a) ASTcmn

TREE

SLOT0

A0

NP

NNP

Paul

SLOT1

rel

VBZ

delivers

SLOT2

A1

NP

NP

DT

a

NN

talk

PP

IN

in

NP

JJ

formal

NN

style

SLOT3

null

. . . SLOT6

null

(b) PAS

TREE

SLOT0

A0

NP

SLOT1

rel

deliver

SLOT2

A1

NP

SLOT3

null

SLOT4

null

SLOT5

null

SLOT6

null

(c) PAStl

Figure 8
Different representations of a same proposition.

role multi-classifier (RM). Of course, this model requires a RM to classify all the nodes
recognized by BC first. An example ASTmn is shown in Figure 7(d).

5.3 Structures for Proposition Re-ranking

In Section 4.4, we presented our re-ranking mechanism which is inspired by the joint
inference model described in (Haghighi, Toutanova, and Manning 2005). Designing
structured features for the re-ranking classifier is complex under many aspects. Unlike
the other structures that we have discussed so far, the definedmappings should: (1) pre-
serve asmuch information as possible about thewhole predicate argument structure; (2)
focus the learning algorithm on the whole structure; (3) be able to identify those small
differences that distinguish more or less accurate labeling schemes. Among the possible
solutions that we have explored, three are especially interesting in terms of accuracy
improvement or linguistic properties, and are described hereinafter.
The ASTcmn (completely marked ASTn, see Figure 8(a)) is an ASTn in which each

argument node label is enriched with the role assigned to the node by RM. The labels
of the descendants of each argument node are modified accordingly, down to pre-
terminal nodes. The ASTcmtn is a variant of ASTcmn in which only the target is marked.
Marking a node descendant is meant to force substructures matching only among
homogeneous argument types. This representation should provide rich syntactic and
lexical information about the parse tree encoding the predicate argument structure.
The PAS (predicate argument structure, see Figure 8(b)) is a completely different

structure that preserves the parse subtrees associated with each argument node while

20

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

discarding the intra-argument syntactic parse information. Indeed, the syntactic links
between the argument nodes are represented as a dummy 1-level tree, which appears
in by any PAS and therefore does not influence the evaluation of similarity between
pairs of structures. Such structure accommodates the predicate and all the arguments of
an annotation in a sequence of 7 slots5. Each slot is attached an argument label which in
turn is attached the subtree rooted in the argument node. The predicate is represented
by means of a pre-terminal node labeled rel to which the lemmatization of the predicate
word is attached as a leaf node. In general, a proposition consists of m arguments,
with m ≤ 6, where m varies according to the predicate and the context. To guarantee
that predicate structures with a different number of arguments are matched in the SST
kernel function, we attach a dummy descendant marked null to the slots not filled by
an argument.
The PAStl (type-only, lemmatized PAS, see Figure 8(c)) is a specialization of the PAS

that only focuses on the syntax of the predicate argument structure, i. e. the type and
relative position of each argument, minimizing the amount of lexical and syntactic
information derived from the parse tree. The differences with the PAS are that: (1) each
slot is attached to a pre-terminal node representing the argument type and a terminal
node whose label indicates the syntactic type of the argument; (2) the predicate word is
lemmatized.
The next section presents the experiments to evaluate the effectiveness of the pro-

posed canonical structures in SRL.

6. Experiments

The experiments aim to measure the contribution and the effectiveness of our proposed
kernel engineering models and of the diverse structured features that we designed (Sec-
tion 5). In this perspective, the role of feature extraction functions is not fundamental
since the study carried out in (Moschitti 2006a) strongly suggests that the SST (Collins
and Duffy 2002) kernel produces higher accuracy than the PT kernel when dealing with
constituent parse trees, which are adopted in our study6. We then selected the SST kernel
and designed the following experiments:
(a) a study of canonical functions based on nodemarking for boundary detection and ar-
gument classification, i. e. ASTm1 , (Section 6.2). Moreover, as the standard features have
shown to be effective, we combined them with ASTm1 based kernels on the boundary
detection and classification tasks (Section 6.2);
(b) we varied the amount of training data to demonstrate the higher generalization
ability of tree kernels. (Section 6.3);
(c) given the promising results of kernel engineering, we also applied it to solve a
more complex task, i. e. conflict resolution in SRL annotations, (see Section 6.4). As this
involves the complete predicate argument structure, we could test advanced canonical
functions generating ASTn, ASTordn and ASTmn ;
(d) previous work has shown that re-ranking is very important to boost the accuracy
of SRL. Therefore, we tested advanced canonical mappings, i. e. those based on ASTcmn ,
PAS and PAStl , on such task (Section 6.5).

5 We assume that predicate argument structures cannot be composed by more than 6 arguments, which is
generally true.

6 Of course the PT kernel may be much more accurate to process PAS and PAStlsince these are not simply
constituent parse trees. Nevertheless, a study on the PT kernel potential is beyond the purpose of this
article.

21

Computational Linguistics Volume volume, Number number

Table 2
Number of arguments (Arguments) and of unrecoverable arguments (Unrecoverable) due to
parse tree errors in sections 2, 3 and 24 of the Peen TreeBank/PropBank.

Sec. Arguments Unrecoverable
2 198,373 454 (0.23%)
3 147,193 347 (0.24%)
24 139,454 731 (0.52%)

6.1 General Setup

The empirical evaluations were mostly carried out within the setting defined in
the CoNLL-2005 Shared Task (Carreras and Màrquez 2005). As a target dataset,
we used the PropBank7 and the automatic Charniak parse trees of the sentences
of Penn TreeBank 2 corpus8 (Marcus, Santorini, and Marcinkiewicz 1993) from the
CoNLL 2005 Shared Task data9. We employed the SVM-light-TK software available at
http://ai-nlp.info.uniroma2.it/moschitti/which encodes fast tree kernel
evaluation (Moschitti 2006b) and combinations between multiple feature vectors and
trees in the SVM-light software (Joachims 1999). We used the default regularization
parameter (option -c) and λ = 0.4 (see (Moschitti 2004)).

6.2 Testing Canonical Functions based on Node Marking

In these experiments, we measured the impact of node marking strategies on boundary
detection (BD) and the complete SRL task, i.e. BD and role classification (RC). We
employed a configuration of the architecture described in Section 4 and previously
adopted in (Moschitti et al. 2005b) in which the simple conflict resolution heuristic is
applied. The results were derived within the CoNLL setting by means of the related
evaluator.
More in detail, in the BD experiments, we used the first million instances from the

Penn TreeBank sections 2-6 for training10 and Section 24 for testing. Our classification
model applied to the above data replicates the results obtained in the CoNLL 2005
shared task, i.e. the highest accuracy in BD among the systems using only one parse tree
and one learning algorithm. For the complete SRL task, we used the previous BC and
all the available data, i.e. the sections from 2 to 21, for training the role multiclassifier.
It is worth mentioning that, as the automatic parse trees contain errors, some

arguments cannot be associated with any covering node thus we cannot extract a tree
representation for them. In particular, Table 2 shows the number of arguments (Column
2) for sections 2, 3 and 24 as well as the number of arguments that we could not take
into account (Unrecoverable) due to the lack of a parse tree nodes exactly covering
their word spans. Note how Section 24 of the Penn TreeBank (which is not part of the
Charniak training set) is much more affected by this problem.

7 http://www.cis.upenn.edu/∼ace
8 http://www.cis.upenn.edu/∼treebank
9 http://www.lsi.upc.edu/∼srlconll/

10 This was the most expensive process in terms of training time, requiring more than one week.

22

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

Table 3
Comparison between different models on Boundary Detection and the complete Semantic Role
Labeling tasks. The training set is constituted by the first 1 million instances from sections 02-06
for the boundary classifier and all arguments from sections 02-21 for the role multiclassifier
(253,129 instances). The performance is measured against section 24 (149,140 instances).

Boundary Detection Semantic Role Labeling
Kernels P R F1 P R F1
AST1 75.75% 71.68% 73.66 64.71% 61.71% 63.17
ASTm1 77.32% 74.80% 76.04 66.58% 64.87% 65.71
Poly 82.18% 79.19% 80.66 75.86% 72.60% 73.81
Poly+AST1 81.74% 80.71% 81.22 74.23% 73.62% 73.92
Poly+ASTm1 81.64% 80.73% 81.18 74.36% 73.87% 74.11

Given the above setting, the impact of nodemarking can bemeasured by comparing
the AST1 and the ASTm1 based kernels. The results are reported in the rows AST1and
ASTm1 of Table 3. Columns 2, 3 and 4 show their Precision, Recall and F1 measure on BD
whereas 5, 6 and 7 report the performance on SRL. We note that marking the argument
node simplifies the generalization process as it improves both tasks of about 3.5 and 2.5
absolute percent points, respectively.
However, Row Poly shows that the polynomial kernel using state-of-the-art features

(Moschitti et al. 2005b) outperforms ASTm1 by about 4.5 percent points in BD and 8 points
in the SRL task. The main reason is that the employed tree structures do not explicitly
encode very important features like the passive voice or predicate position. In (Moschitti
2004), these are shown to be very effective especially when used in polynomial kernels.
Of course, it is possible to engineer trees including such and other standard features
with a canonical mapping, but the aim here is to provide new interesting representations
rather than abiding to the simple exercise of representing already designed features
within tree kernel functions. In other words, we follow the idea presented in (Moschitti
2004), where tree kernels were suggested as a means to derive new features rather than
generate a stand-alone feature set.
Rows Poly+AST1and Poly+ASTm1 investigate this possibility by presenting the com-

bination of polynomial and tree kernels. Unfortunately, the results on both BD and SRL
do not show enough improvement to justify the use of tree kernels, e.g. Poly+ASTm1
improves Poly of only 0.52 in BD and 0.3 in SRL. The small improvement is intuitively
due to the use of (1) a state-of-the-art model as a baseline and (2) a very large amount
of training data which decreases the contribution of tree features. In the next section an
analysis in terms of training data will shed some light on the role of tree kernels for BD
and RC in SRL.

6.3 The Role of Tree Kernels for Boundary Detection and Argument Classification

The previous section has shown that if a state-of-the-art model11 is adopted, then the
tree kernel contribution is marginal. On the contrary, if a non state-of-the-art model is

11 The adopted model is the same used in (Moschitti et al. 2005b) which is the most accurate among the
systems that use a single learning model, a single source of syntactic information and no accurate
inference mechanism. If tree kernels improved such basic model they would likely improve the accuracy
of more complex systems as well.

23

Computational Linguistics Volume volume, Number number

60
62
64
66
68
70
72
74
76
78

1 2 3 4 5 6 7 8 9 10
Percentage of Training Data

F1

Poly Poly+AST1
Poly+AST1m AST1m
AST1

(a)

67

69

71

73

75

77

79

81

10 20 30 40 50 60 70 80 90 100
Percentage of Training Data

F1

Poly Poly+AST1
Poly+AST1m AST1m
AST1

(b)

40
42
44
46
48
50
52
54
56
58
60

1 2 3 4 5 6 7 8 9 10
Percentage of Training Data

F1

Poly Poly+AST1
Poly+AST1m AST1m
AST1

(c)

50
52
54
56
58
60
62
64
66
68
70

10 20 30 40 50 60 70 80 90 100
Percentage of Training Data

F1

Poly Poly+AST1
Poly+AST1m AST1m
AST1

(d)

Figure 9
Learning curves for BD in frames (a) and (b) and the SRL task in frames (c) and (d), where 100%
of data corresponds to 1 million candidate argument nodes for boundary detection and 64.000
argument nodes for role classification.

adopted tree kernels can play a relevant role. To verify this hypothesis, we tested the
polynomial kernel over the standard feature vector proposed in (Gildea and Jurafsky
2002) obtaining an F1 of 67.3, which is comparable with the ASTm1 model, i.e. 65.71.
Moreover, a kernel combination produced a relevant improvement of both models
reaching an F1 of 70.4.
Thus, the role of tree kernels relates to the design of features for novel linguistic

tasks for which the optimal data representation has not been developed yet. For exam-
ple, although SRL has been studied for many years and many effective features have
been designed, representations for languages like Arabic are still not very well under-
stood and raise challenges in the design of effective predicate argument descriptions.
However, the above hypothesis on the usefulness of tree kernels is not completely

satisfactory as the huge feature space produced by them should play a more important
role in predicate argument representation. For example, the many fragments extracted
by an AST1 provide a very promising back-off model for the Path feature, which should
improve the generalization process of SVMs.
As back-off models show their advantages when the amount of training data is

small, we experimented with Poly, AST1, ASTm1 , Poly+AST1 and Poly+ASTm1 and differ-
ent bins of training data, starting from a very small set, i.e. 10,000 instances (1%) until 1

24

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

Table 4
Boundary detection accuracy (F1) on gold parse trees and ambiguous structures employing the
different conflict resolution methodologies described in Section 4.3.

RND HEU ASTordn

73.13 71.50 91.11

million (100%) of instances. The results on the BD classifiers and the complete SRL task
are very interesting and are illustrated by Figure 9. We note that:
First, Graph (a) shows that with only 1% of data, i.e. 640 arguments as positive

examples, the F1 on BD of the ASTm1 kernel is surprisingly about 3 points higher than
the one obtained by the polynomial kernel (Poly), i. e. the state-of-the-art.When ASTm1 is
combined with Poly the improvement reaches 5 absolute percent points. This suggests
that tree kernels should always be used when small training data sets are available.
Second, although the performance of AST1 is very lower than all the other models,

its combination with Poly produces results similar to Poly+ASTm1 , especially when the
size of training data increases. This, in agreement with the back-off property, indicates
that the number of tree fragments is more relevant than their quality.
Third, Graph (b) shows that as we increase training data, the advantage of using

tree kernels decreases. This is rather intuitive as (i) in general increasing training data
allows weaker machine learning/representation models to fill the gap with those more
accurate, and (ii) if the hypothesis that tree kernels provide back-off models is true, a lot
of training data makes them less critical, e.g. the probability to find the Path feature of
a test instance in the training set becomes high.
Finally, graphs (c) and (d) show learning curves12 similar to graphs (a) and (b), but

with a reduced impact of tree kernels on the Poly model. This is due to the reduced
impact of ASTm1 on role classification. Such finding is in agreement with the results
in (Moschitti 2004), which show that for argument classification the SCF structure (a
variant of the ASTmn), is more effective. Thus a comparison between learning curves of
Poly and SCF on RC may show a behavior similar to Poly and ASTm1 for BD.

6.4 Conflict Resolution Results

In these experiments, we are interested in (1) the evaluation of the accuracy of our
tree kernel based conflict resolution strategy and (2) studying the most appropriate
structured features for the task.
A first evaluation was carried out over gold Penn TreeBank parses and PropBank

annotations. We compared the alternative conflict resolution strategies implemented by
our architecture (see Section 4.3), namely the random (RND), the heuristic (HEU) and
a tree kernel based disambiguator working with ASTordn structures. The disambigua-
tors were run on the output of BC, i. e. without any information about the candidate
arguments roles. BC was trained on sections 2 to 7 with a high-recall linear kernel. We
applied it to classify sections 8 to 21 and obtained 2,988NSTs containing at least an over-
lapping node. These structures generated 3,624 positive NSTs (i. e. correct structures)

12 Note that using all training data, all the models reach lower F1s than the respective values shown in Table
3. This happens since the data for training the role multiclassifier is restricted to the first million
instances, i.e. about 64,000 out of the total 253,129 arguments.

25

Computational Linguistics Volume volume, Number number

Table 5
SRL accuracy on different PropBank target sections in terms of F1 measure of the different
structured features employed for conflict resolution.

Target section ASTn ASTordn ASTmn
21 73.7 77.3 78.7
23 68.9 71.2 72.1

and 4,461 negative NSTs (incorrect structures) in which no overlap is present. We used
them to train the ASTordn classifier. The F1 measure on the boundary detection task was
evaluated on the 385 overlapping annotations of Section 23, consisting of 642 argument
and 15,408 non-argument nodes.
The outcome of this experiment is summarized in Table 4. We note that: (1) the

RND disambiguator (slightly) outperforms the HEU. This suggests that the heuristics
that we implemented were inappropriate for solving the problem. It also underlines
how difficult it is to explicitly choose the aspects that are relevant for a complex, non
local task such as overlap resolution. (2) The ASTordn classifier outperforms the other
strategies by about 20% points, i. e. 91.11 vs 73.13 and 71.50. This datum along with the
previous one is a good demonstration of how tree kernels can be effectively exploited
to describe phenomena whose relevant features are largely unknown or difficult to be
explicitly represented. It should be noted that a more accurate baseline can be evaluated
by using the Viterbi-style search (see Section 4.4.1). However, the experiments in Section
6.5 show that the heuristics produce the same accuracy (at least when the complete task
is carried out).
The above experiments suggested that tree kernels are promising methods to re-

solve annotation conflicts, thus, we tried to select the most representative structured
features (i. e. ASTn , ASTordn or ASTmn) also when automatic parse trees are used. We
trained BC on sections 2-8, whereas, to achieve a very accurate argument classifier, we
trained a role multi-classifier (RM) on sections 2-21. Then, we trained the ASTn , ASTordn

and ASTmn classifiers on the output of BC. To test BC, RM and the tree kernel classifiers,
we ran two evaluations on Section 23 and Section 2113.
Table 5 shows the F1 measure of the different tree kernels (Columns 2, 3 and 4)

for conflict resolution over the NSTs of sections 21 and 23. Several points should be
remarked:
(1) the general performance is by far lower than the one achieved on gold trees, as

shown in Table 4. This datum and the gap of about 6% points between sections 21 and
23 confirm the impact of parsing accuracy on the subtasks of the SRL process;
(2) the ordinal numbering of arguments (ASTordn) and the role type information

(ASTmn) provide tree kernels with more meaningful fragments since they improve the
basic model of about 4%;
(3) the deeper semantic information generated by the argument labels provides

useful clues to select correct predicate argument structures, since the ASTmn model
improves ASTordn performance on both sections.

13 As Section 21 of the Penn TreeBank is part of the Charniak parser training set, the performance derived
on its parse trees represents an upper bound for our classifiers, i. e. the results using a nearly ideal
syntactic parser and role multiclassifier.

26

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

Table 6
Number of propositions, alternative annotations (as output by the Viterbi algorithm) and pair
comparisons (i. e. re-ranker input examples) for the PropBank sections used for the experiments.

Section 12 Section 23 Section 24
Propositions 4,899 5,267 3,248
Alternatives 24,494 26,325 16,240
Comparisons 74,650 81,162 48,582

6.5 Proposition Re-ranking Results

In these experiments, Section 23 was used for testing our proposition re-ranking. We
employed a BC trained on sections from 2 to 8, whereas RM was trained on sections
2-1214. In order to provide a probabilistic interpretation of the SVM output (see Section
4.4.1),we evaluated each classifier distribution parameter based on its output on Section
12. For computational complexity reasons, we decided to consider the 5 most likely
labelings for each node and the 5 first alternatives output by the Viterbi algorithm (i. e.
M = 5 and N = 5).
With this set up, we evaluated the accuracy lower and upper bounds of our system.

As our baseline, we consider the accuracy of a re-ranker that always chooses the first
alternative output by the Viterbi algorithm, i. e. the most likely according to the joint
inference model. This accuracy has been measured in 75.91 F1 percent points; this is
practically identical to the 75.89 obtained by applying heuristics to remove overlaps
generated by BC.
This does not depend on the bad quality of the 5 top labelings. Indeed, we selected

the best alternative produced by the Viterbi algorithm according to the gold standard
score, and we obtained an F1 of 84.76 for N = 5. Thus, the critical aspect resides in the
selection of the best annotations, which should be carried out by an automatic re-ranker.
We learned such classifier with the data described in Table 6. Rows 2 and 3 show

the number of distinct propositions and alternative annotations output by the Viterbi
algorithm for each of the employed sections. In Row 3, the number of pair comparisons,
i. e. the number of training/test examples for the classifier, is shown.
By using such data, we carried out a complete SRL experiment which is summa-

rized in Table 7. First, we compared the accuracy of the ASTcmn , PAS and PAS
tlclassifiers

trained on Section 24 (in Row 3, columns 2, 3 and 4) and discovered that the latter
structure produces a noticeable F1 improvement, i. e. 78.15 vs 76.47 and 76.77, whereas
the accuracy gap between the PAS and the ASTcmn classifiers is very small, i. e. 76.77 vs
76.47 percent points. We selected the most interesting structured feature, i. e. the PAStl,
and extended it with the local (to each argument node) standard features commonly
employed for the boundary detection and argument classification tasks, as in (Haghighi,
Toutanova, and Manning 2005). This richer kernel (PAStl+STD, Column 5) was com-
pared with the PAStl one. The comparison was performed on 2 different training sets
(rows 2 and 3): in both cases, the introduction of the standard features produced a
performance decrement, most notably in the case of Section 12, i. e. 82.07 vs 75.06. Our
best re-ranking kernel, i. e. the PAStl, was then employed in a larger experiment, using

14 In these experiments we did not use tree kernels for BC and RM as we wanted to measure the impact of
tree kernels only on the re-ranking stage.

27

Computational Linguistics Volume volume, Number number

Table 7
Summary of the proposition re-ranking experiments with different training sets.

Training Section ASTcmn PAS PAStl PAStl+STD
12 - - 78.27 77.61
24 76.47 76.77 78.15 77.77
12+24 - - 78.44 -

both sections 12 and 24 for testing (Row 4), achieving an F1 measure of 78.44. We note
that:
First, the accuracy of the ASTcmn and PAS classifiers is very similar, i. e. 76.77 vs

76.47. This datum suggests that the intra-argument syntactic information is not critical
for the re-ranking task, as including it or not in the learning algorithm does not lead to
noticeable differences.
Second, the PAStl kernel is muchmore effective than those based onASTcmn and PAS,

which are always outperformed. This may be due to the fact that two ASTcmn s (or PASs)
always share a large number of substructures, since most alternative annotations tend
to be very alike and the small differences among them only affect a small part of the
encoding syntactic information; on the other hand, the small amount of local parsing
information encoded in the PAStls enables a good generalization process;
Finally, the introduction of the standard, local standard features in our re-ranking

model caused a performance loss of about 0.5 points on both sections 12 and 24. This
fact, which is in contrast with what has been shown in (Haghighi, Toutanova, and
Manning 2005), might be the consequence of the small training sets that we employed.
Indeed, local standard features tend to be very sparse and their effectiveness should be
evaluated against a larger data set.

7. Discussions and Conclusions

The design of automatic systems for the labeling of semantic roles requires the solution
of complex problems. Among other issues, feature engineering is made difficult by the
structured nature of the data, i. e. features should represent information expressed by
automatically generated parse trees. This raises two main problems: (1) the modeling
of effective features, partially solved for some subtasks in previous works and (2) the
implementation of the software for the extraction of a large number of such features.
A system completely (or largely) based on tree kernels alleviates both problems as

(1) kernel functions automatically generate features and (2) only a procedure for the
extraction of subtrees is needed. Although, some of the manually designed features
seem to be superior to those derived with tree kernels, their combination still seems
worth applying. Moreover, tree kernels provide a back-off model that greatly outper-
forms state-of-the-art SRL models when the amount of training data is small.
To demonstrate the above points, we carried out a comprehensive study on the

use of tree kernels for semantic role labeling by designing several canonical mappings.
These correspond to the application of innovative tree kernel engineering techniques
tailored on different stages of an SRL process. The experiments with such methods
and Support Vector Machines on the data set provided by the CoNLL 2005-shared task
(Carreras and Màrquez 2005) show that:
First, tree kernels are a valid support to manually designed features for many stages

of the SRL process. We have shown that our improved tree kernel, i.e. the one based on

28

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

ASTm1 , highly improves accuracy in both boundary detection and the SRL task when
the amount of training data is small, e.g. 5 absolute percent points over a state-of-the-
art boundary classifier. In the case of argument classification the improvement is less
evident but still consistent, about 3%.
Second, appropriately engineered tree kernels can replace standard features in

many SRL subtasks. For example, in complex tasks such as conflict resolution or re-
ranking, they provide an easy way to build new features that would be difficult to
describe explicitly. More generally, tree kernels can be used to combine different sources
of information for the design of complex learning models.
Third, in the specific re-ranking task, our structured features show a noticeable

improvement over our baseline, i. e. about 2.5 percent points. This could be increased
considering that we have not been able to fully exploit the potential of our re-ranking
model, whose theoretical upper bound is 6 percent points away. Still, although we only
used a small fraction of the available training data (i. e. only 2 sections out of 22 were
used to train the re-ranker) our system’s accuracy is in line with state-of-the-art systems
(Carreras and Màrquez 2005) that do not employ tree kernels.
Finally, although the study carried out in this article is quite comprehensive, several

issues should be considered in more depth in the future:
(a) The tree feature extraction functions ST, SST and PT should be studied in com-

bination with the proposed canonical mappings. For example, as the PT kernel seems
more suitable for the processing of dependency information, it would be interesting
to apply it in an architecture using such kind of syntactic parse trees, e. g. (Chen
and Rambow 2003). In particular, the combination of different extraction functions on
different syntactic views may lead to very good results.
(b) Once the set of the most promising kernels is established, it would be interesting

to use all the available CoNLL 2005 data. This would allow us to estimate the potential
of our approach by comparing with previous work on a fairer basis.
(c) The use of fast tree kernels (Moschitti 2006a) along with the proposed tree repre-

sentations makes the learning and classification much faster, so that the overall running
time is comparable with polynomial kernels. However, when used with SVMs their
running time on very large datasets (e. g. millions of instances) becomes prohibitive.
Exploiting tree kernel derived features in a more efficient way, e. g. by selecting the
most relevant fragments and using them in an explicit space, is thus an interesting line
of future research. Note that such fragments would be the product of a reverse engineer
process useful to derive linguistic insights on semantic role theory.
(d) As CoNLL 2005 (Punyakanok et al. 2005) has shown that multiple parse trees

provide the most important boost to the accuracy of SRL systems, we would like to
extend our model to work with multiple syntactic views of each input sentence.

Acknowledgments
This article is the result of research on kernel methods for Semantic Role Labeling which started
in 2003 and went under the review of several program committees of different scientific
communities, from which it highly benefitted. In this perspective, we would like to thank the
reviewers of the SRL special issue as well as those of the ACL, CoNLL, EACL, ECAI, ECML,
HLT-NAACL and ICML conferences. We are indebted to Silvia Quarteroni for her help in
reviewing the English formulation of an earlier version of this article.

References
Baker, Collin F., Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley FrameNet project. In
COLING-ACL ’98: Proceedings of the Conference, held at the University of Montréal, pages 86–90.

29

Computational Linguistics Volume volume, Number number

Carreras, Xavier and Lluís Màrquez. 2004. Introduction to the CoNLL-2004 Shared Task:
Semantic Role Labeling. In Hwee Tou Ng and Ellen Riloff, editors,HLT-NAACL 2004
Workshop: Eighth Conference on Computational Natural Language Learning (CoNLL-2004), pages
89–97, Boston, Massachusetts, USA, May 6 - May 7.

Carreras, Xavier and Lluís Màrquez. 2005. Introduction to the CoNLL-2005 Shared Task:
Semantic Role Labeling. In Proceedings of the Ninth Conference on Computational Natural
Language Learning (CoNLL-2005), pages 152–164, Ann Arbor, Michigan, June.

Chen, John and Owen Rambow. 2003. Use of Deep Linguistic Features for the Recognition and
Labeling of Semantic Arguments. In Proceedings of the 2003 Conference on Empirical Methods in
Natural Language Processing, pages 41–48.

Collins, Michael and Nigel Duffy. 2002. New Ranking Algorithms for Parsing and Tagging:
Kernels over Discrete structures, and the voted perceptron. In ACL02, pages 263–270.

Culotta, Aron and Jeffrey Sorensen. 2004. Dependency Tree Kernels for Relation Extraction. In
ACL04, pages 423–429, Barcelona, Spain.

Cumby, Chad and Dan Roth. 2003. Kernel Methods for Relational Learning. In Proceedings of
ICML 2003, pages 107–114, Washington, DC, USA.

Fillmore, Charles J. 1968. The Case for Case. In Emmon Bach and Robert T. Harms, editors,
Universals in Linguistic Theory. Holt, Rinehart, and Winston, New York, pages 1–210.

Gildea, Daniel and Daniel Jurafsky. 2002. Automatic Labeling of Semantic Roles. Computational
Linguistics, 28(3):245–288.

Haghighi, Aria, Kristina Toutanova, and Christopher Manning. 2005. A Joint Model for Semantic
Role Labeling. In Proceedings of the Ninth Conference on Computational Natural Language Learning
(CoNLL-2005), pages 173–176, Ann Arbor, Michigan, June.

Jackendoff, Ray. 1990. Semantic Structures, Current Studies in Linguistics Series. Cambridge,
Massachusetts: The MIT Press.

Joachims, Thorsten. 1999. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169–184.

Kazama, Jun’ichi and Kentaro Torisawa. 2005. Speeding up Training with Tree Kernels for Node
Relation Labeling. In Proceedings of EMNLP 2005, pages 137–144, Toronto, Canada.

Kudo, Taku and Yuji Matsumoto. 2003. Fast Methods for Kernel-Based Text Analysis. In Erhard
Hinrichs and Dan Roth, editors, Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 24–31.

Levin, Beth. 1993. English Verb Classes and Alternations. The University of Chicago Press.
Lin, H.-T., C.-J. Lin, and R.C. Weng. 2003. A Note on Platt’s Probabilistic Outputs for Support
Vector Machines. Technical report, National Taiwan University.

Litkowski, Kenneth. 2004. Senseval-3 task: Automatic labeling of semantic roles. In Rada
Mihalcea and Phil Edmonds, editors, Senseval-3: Third International Workshop on the Evaluation
of Systems for the Semantic Analysis of Text, pages 9–12, Barcelona, Spain, July.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz. 1993. Building a Large Annotated Corpus
of English: The Penn Treebank. Computational Linguistics, 19:313–330.

Moschitti, Alessandro. 2004. A study on Convolution Kernels for Shallow Semantic Parsing. In
proceedings of the 42th Conference on Association for Computational Linguistic (ACL-2004), pages
335–342, Barcelona, Spain.

Moschitti, Alessandro. 2006a. Efficient Convolution Kernels for Dependency and Constituent
Syntactic Trees. In Proceedings of The 17th European Conference on Machine Learning, pages
318–329, Berlin, Germany.

Moschitti, Alessandro. 2006b. Making Tree Kernels Practical for Natural Language Learning. In
Proceedings of 11th Conference of the European Chapter of the Association for Computational
Linguistics (EACL2006), pages 113–120.

Moschitti, Alessandro, Bonaventura Coppola, Daniele Pighin, and Roberto Basili. 2005a.
Engineering of Syntactic Features for Shallow Semantic Parsing. In Proceedings of the ACL
Workshop on Feature Engineering for Machine Learning in Natural Language Processing, pages
48–56, Ann Arbor, Michigan, June.

Moschitti, Alessandro, Ana-Maria Giuglea, Bonaventura Coppola, and Roberto Basili. 2005b.
Hierarchical Semantic Role Labeling. In Proceedings of the Ninth Conference on Computational
Natural Language Learning (CoNLL-2005), pages 201–204, Ann Arbor, Michigan, June.

Moschitti, Alessandro, Daniele Pighin, and Roberto Basili. 2006. Tree Kernel Engineering in
Semantic Role Labeling Systems. In Proceedings of the Workshop on Learning Structured
Information in Natural Language Applications, EACL 2006, pages 49–56, Trento, Italy, April.

30

Moschitti, Pighin, Basili Tree Kernels for Semantic Role Labeling

European Chapter of the Association for Computational Linguistics.
Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. The Proposition Bank: an Annotated
Corpus of Semantic Roles. Computational Linguistics, 31(1):71–106.

Platt, J. 1999. Probabilistic Outputs for Support Vector Machines and Comparison to Regularized
LikelihoodMethods. In A.J. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 61–74. MIT Press.

Pradhan, Sameer, Kadri Hacioglu, Valerie Krugler, Wayne Ward, James H. Martin, and Daniel
Jurafsky. 2005a. Support Vector Learning for Semantic Argument Classification.Machine
Learning, 60:1-3:11–39.

Pradhan, Sameer, Kadri Hacioglu, Wayne Ward, James H. Martin, and Daniel Jurafsky. 2005b.
Semantic Role Chunking Combining Complementary Syntactic Views. In Proceedings of the
Ninth Conference on Computational Natural Language Learning (CoNLL-2005), pages 217–220,
Ann Arbor, Michigan, June.

Pradhan, Sameer, Wayne Ward, Kadri Hacioglu, James Martin, and Daniel Jurafsky. 2005c.
Semantic Role Labeling using Different Syntactic Views. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pages 581–588, Ann Arbor,
Michigan, June.

Pradhan, Sameer S, Wayne HWard, Kadri Hacioglu, James HMartin, and Dan Jurafsky. 2004.
Shallow Semantic Parsing using Support Vector Machines. In Susan Dumais, Daniel Marcu,
and Salim Roukos, editors,HLT-NAACL 2004: Main Proceedings, pages 233–240, Boston,
Massachusetts, USA, May 2 - May 7.

Punyakanok, Vasin, Peter Koomen, Dan Roth, and Wen-tau Yih. 2005. Generalized Inference
with Multiple Semantic Role Labeling Systems. In Proceedings of the Ninth Conference on
Computational Natural Language Learning (CoNLL-2005), pages 181–184, Ann Arbor, Michigan,
June.

Shawe-Taylor, John and Nello Cristianini. 2004. Kernel Methods for Pattern Analysis. Cambridge
University Press.

Shen, Libin, Anoop Sarkar, and Aravind k. Joshi. 2003. Using LTAG Based Features in Parse
Reranking. In Empirical Methods for Natural Language Processing (EMNLP), pages 89–96,
Sapporo, Japan.

Thompson, Cynthia A., Roger Levy, and Christopher Manning. 2003. A Generative Model for
Semantic Role Labeling. In 14th European Conference on Machine Learning, pages 397–408.

Tjong Kim Sang, Erik, Sander Canisius, Antal van den Bosch, and Toine Bogers. 2005. Applying
Spelling Error Correction Techniques for Improving Semantic Role Labelling. In Proceedings of
the Ninth Conference on Computational Natural Language Learning (CoNLL-2005), pages 229–232,
Ann Arbor, Michigan, June.

Toutanova, Kristina, Aria Haghighi, and Christopher Manning. 2005. Joint Learning Improves
Semantic Role Labeling. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pages 589–596, Ann Arbor, Michigan, June.

Toutanova, Kristina, Penka Markova, and Christopher Manning. 2004. The Leaf Path Projection
View of Parse Trees: Exploring String Kernels for HPSG Parse Selection. In Dekang Lin and
Dekai Wu, editors, Proceedings of EMNLP 2004, pages 166–173, Barcelona, Spain, July.

Vapnik, Vladimir N. 1998. Statistical Learning Theory. John Wiley and Sons.
Vishwanathan, S.V.N. and A.J. Smola. 2002. Fast Kernels on Strings and Trees. In Proceedings of
Neural Information Processing Systems, pages 569–576.

Xue, Nianwen and Martha Palmer. 2004. Calibrating Features for Semantic Role Labeling. In
Dekang Lin and Dekai Wu, editors, Proceedings of EMNLP 2004, pages 88–94, Barcelona, Spain,
July.

Zelenko, D., C. Aone, and A. Richardella. 2003. Kernel Methods for Relation Extraction. Journal of
Machine Learning Research, pages 1083–1106.

Zhang, Min, Jie Zhang, and Jian Su. 2006. Exploring Syntactic Features for Relation Extraction
using a Convolution tree kernel. In Proceedings of the Human Language Technology Conference of
the NAACL, Main Conference, pages 288–295, New York City, USA, June.

31

32

