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ABSTRACT

Previous work on Natural Language Processing for Information
Retrieval has shown the inadequateness of semantic and syntac-
tic structures for both document retrieval and categorization. The
main reason is the high reliability and effectiveness of language
models, which are sufficient to accurately solve such retrieval tasks.
However, when the latter involve the computation of relational se-
mantics between text fragments simple statistical models may re-
sult ineffective. In this paper, we show that syntactic and semantic
structures can be used to greatly improve complex categorization
tasks such as determining if an answer correctly responds to a ques-
tion. Given the high complexity of representing semantic/syntactic
structures in learning algorithms, we applied kernel methods along
with Support Vector Machines to better exploit the needed rela-
tional information. Our experiments on answer classification on
Web and TREC data show that our models greatly improve on bag-
of-words.
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H. [Information Systems]: Information Storage and Retrieval—
Content Analysis and Indexing, Linguistic processing
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Algorithms, Experimentation, Performance

Keywords
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1. INTRODUCTION
Previous work on Natural Language Processing (NLP) for Infor-

mation Retrieval (IR) has shown that the increase of the compu-
tational complexity for the processing of advanced linguistic rep-
resentations is not justified by the small gain in accuracy, which
often turns out to be a decrease. For example, apparently promis-
ing linguistic structures like subject-verb-object have been shown
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in TREC to be inadequate for typical retrieval tasks [35]. Similar
findings have been derived for Text Categorization using advanced
linguistic processing, e.g. [22, 12, 1, 26]. Despite such failure,
work on Question Answering (QA) suggests that syntactic and lin-
guistic structures help in solving the task [41, 13].

From the above studies, it emerges that when the retrieval task
is linguistically complex, syntax and semantics may play a relevant
role. In this perspective, one of the most complex Text Catego-
rization task relates to the detection of the relationships between
two text fragments. One typical example of relation, useful for de-
signing retrieval systems, is the one holding between question and
answer, i.e. if the latter text fragment correctly responds to the for-
mer.

In QA, this task is mostly tackled by using different heuristics
and classifiers, which aim at extracting the best answers [6, 8].
However, if the question is a definition, a more effective approach
would be to test if there is a correct relationship between the answer
and the query. This depends on the structures of the two text frag-
ments. Designing language models to capture such a relation could
be too complex since it requires expensive probabilistic models (in
terms of design and computational resources) for the representa-
tion of structural information. More specifically, such models suf-
fer from (i) computational complexity issues, e.g. the processing
of large bayesian networks, (ii) a high complexity to estimate and
smooth probabilities and (iii) high sensitiveness to irrelevant fea-
tures and processing errors. These aspects make the use of linguis-
tic processing very difficult since it inevitably introduces structures
which contain noise and errors.

In contrast, discriminative models such as Support Vector Ma-
chines (SVMs) [38] have been proven to be robust to noise and
irrelevant features. Thus, partially correct linguistic structures may
still provide a relevant contribution since only the relevant informa-
tion will be taken into account. Moreover, such a learning approach
supports the use of kernel methods which allow for an efficient and
effective representation of structured data.

SVMs and Kernel Methods have recently been applied to natural
language tasks with promising results, e.g. [7, 20, 11, 32, 10, 21,
37, 17, 44]. More specifically, in question classification, tree ker-
nels [43, 25] have shown accuracy comparable to the best models,
e.g. [23].

Moreover, [31, 28, 24] have shown that shallow semantic infor-
mation in the form of predicate argument structures (PASs) [14,
16] improves the automatic detection of correct answers to a target
question. In particular, in [28], we proposed kernels for processing
PASs (in PropBank1 format [19]) extracted from question/answer
pairs. However, the relatively high kernel computational complex-
ity and the limited improvement on the bag-of-words (BOW) do
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not make the use of such technique practical for real world retrieval
applications.

In this paper, we carry out a thorough study on the use of syntac-
tic/semantic structures for relational learning from questions and
answers. We designed sequence kernels for words and Part of
Speech Tags which capture basic lexical semantics and basic syn-
tactic information. Then, we design a novel shallow semantic ker-
nel which is far more efficient and also more accurate than the one
proposed in [28].

The extensive experiments carried out on two different corpora
of questions and answers, which have been derived from Web doc-
uments and the TREC corpus show that:

• Kernels based on PAS, POS-tag sequences and syntactic parse
trees improve the BOW approach on both datasets. On the
TREC data the improvement is interestingly high, e.g. about
60%, making its application worthwhile.

• The new kernel for processing PASs is more efficient and
effective than previous models so that it can be practically
used in answer re-ranking systems.

• Our best question/answer classifier, used as re-ranker, sig-
nificantly improves the QA system accuracy, confirming its
promising applicability.

In the remainder, Section 2 presents our use of kernel functions
for structural information and Section 3 introduces our data repre-
sentations. Section 4 reports on our experiments with the above
models whereas Section 5 illustrates the related work. Finally, con-
clusions are drawn in Section 6.

2. KERNELS FOR STRUCTURED DATA
Kernel Methods refer to a large class of learning algorithms based

on inner product vector spaces, among which Support Vector Ma-
chines (SVMs) are one of the most well-known algorithms. The
main idea behind SVMs is to learn a hyperplane H(~x) = ~w·~x+b =
0, where ~x is the feature vector representation of a classifying ob-
ject o whereas ~w ∈ ℜn (a vector space) and b ∈ ℜ are parameters
learnt from training examples by applying the Structural Risk Min-

imization principle [38]. The object o is mapped in ~x with a feature
function φ : O → ℜn, where O is the set of the objects. o is
categorized in the target class only if H(~x) ≥ 0.

The kernel trick allows us to rewrite the decision hyperplane as:

H(~x) =
“

X

i=1..l

yiαi~xi

”

· ~x + b =

X

i=1..l

yiαi~xi · ~x + b =
X

i=1..l

yiαiφ(oi) · φ(o) + b,

where yi is equal to 1 for positive and -1 for negative examples,
αi ∈ ℜ with αi ≥ 0, oi ∀i ∈ {1, .., l} are the training instances
and the product K(oi, o) = 〈φ(oi) · φ(o)〉 is the kernel function
associated with the mapping φ.

Note that it is not necessary to apply the mapping φ, we can
use K(oi, o) directly. This allows, under the Mercer’s conditions
[30], for defining abstract kernel functions which generate implicit
feature spaces. In turn, this alleviates the feature extraction/design
step and allows for the use of huge feature space (possibly infinite)
since the scalar product (i.e. K(·, ·)) is implicitly evaluated.

In the remainder of this section, we present the String Kernel
(SK) proposed in [30] to evaluate the number of subsequences be-
tween two sequences, the Syntactic Tree Kernel (STK) [7], which

computes the number of syntactic tree fragments, the Shallow Se-
mantic Tree Kernel (SSTK) [28], which considers fragments from
PASs, and the Partial Tree Kernel (PTK) [25], which provides a
very general representation of trees in terms of tree fragments.

2.1 String Kernels
The String Kernels that we consider count the number of sub-

strings containing gaps shared by two sequences, i.e. some of
the characters of the original string are skipped. Gaps modify the
weight associated with the target substrings as shown in the follow-
ing.

Let Σ be a finite alphabet, Σ∗ =
S∞

n=0 Σn is the set of all
strings. Given a string σ ∈ Σ∗, |σ| denotes the length of the string,
σ can be written as s1..s|s| with si ∈ Σ and σ[i : j] selects the
substring sisi+1..sj−1sj from the i-th to the j-th character. u is a

subsequence of σ if there is a sequence of indices ~I = (i1, ..., i|u|),
with 1 ≤ i1 < ... < i|u| ≤ |σ|, such that u = si1 ..si|u|

or

u = σ[~I] for short. d(~I) is the distance between the first and last

character of the subsequence u in σ, i.e. d(~I) = i|u| − i1 + 1.
Finally, given σ1, σ2 ∈ Σ∗, σ1σ2 indicates their concatenation.

The set of all substrings of a text corpus forms a feature space
denoted by F ⊂ Σ∗. To map a string σ into R

∞ space, we can

use the following functions: φu(σ) =
P

~I:u=s[~I]
λd(~I) for some

λ ≤ 1. These functions count the number of occurrences of u in

the string σ and assign them a weight λd(~I) proportional to their
lengths. Hence, the inner product of the feature vectors for two
strings σ1 and σ2 returns the sum of all common subsequences
weighted according to their frequency of occurrences and lengths,
i.e.

SK(σ1, σ2) =
X

u∈Σ∗

φu(σ1) · φu(σ2) =
X

u∈Σ∗

X

~I1:u=σ1[~I1]

λd( ~I1)

X

~I2:u=σ2[~I2]

λ
d( ~I2) =

X

u∈Σ∗

X

~I1:u=σ1[~I1]

X

~I2:u=σ2[~I2]

λ
d( ~I1)+d(~I2)

It is worth to note that: (a) longer subsequences receive lower
weights; (b) valid substrings are sequences of the original string
with some characters omitted, i.e. gaps; (c) gaps determine the
weighting function since d(.) counts the number of characters in
the substrings as well as the gaps that were skipped in the original
string, and (d) symbols of a string can also be whole words, i.e. the
Word Sequence Kernel [4].

2.2 Tree Kernels
The main underlying idea of tree kernels is to compute the num-

ber of common substructures between two trees T1 and T2 with-
out explicitly considering the whole fragment space. Let F =
{f1, f2, . . . , f|F|} be the set of tree fragments and χi(n) an in-
dicator function equal to 1 if the target fi is rooted at node n and
equal to 0 otherwise. A tree kernel function over T1 and T2 is de-
fined as TK(T1, T2) =

P

n1∈NT1

P

n2∈NT2

∆(n1, n2), where

NT1
and NT2

are the sets of nodes in T1 and T2, respectively, and

∆(n1, n2) =
P|F|

i=1 χi(n1)χi(n2).
The ∆ function is equal to the number of common fragments

rooted in nodes n1 and n2, and thus, depends on the fragment type.
We report its algorithm for the evaluation of the number of syntac-
tic tree fragments (STFs) [7], the number of shallow semantic tree
fragments (SSTFs) [28], and the number of partial tree fragment
(PTFs) [25].

2.2.1 Syntactic Tree Kernel (STK)

A syntactic tree fragment (STF) is a set of nodes and edges from
the original tree which is still a tree and with the constraint that
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Figure 1: A tree for the sentence "Autism is a disease" with some of

its syntactic tree fragments (STFs).
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Figure 2: A tree for the sentence "Autism is a disease" with some of

its partial tree fragments (PTFs).

any node must have all or none of its children. This is equivalent
to stating that the production rules contained in the STF cannot be
partial.

To compute the number of common STFs rooted in n1 and n2,
the STK uses the following ∆ function [7]:

1. if the productions at n1 and n2 are different then ∆(n1, n2) =
0;

2. if the productions at n1 and n2 are the same, and n1 and n2

have only leaf children (i.e. they are pre-terminal symbols)
then ∆(n1, n2) = λ;

3. if the productions at n1 and n2 are the same, and n1 and

n2 are not pre-terminals then ∆(n1, n2) = λ
Ql(n1)

j=1 (1 +

∆(cn1
(j), cn2

(j)))

where l(n1) is the number of children of n1, cn(j) is the j-th child
of node n and λ is a decay factor penalizing larger structures.

Figure 1 shows 10 STFs (out of 17) of the subtree on the left.
STFs satisfy the constraint that grammatical rules cannot be bro-
ken. For example, [VP [VBZ NP]] is a STF which has two non-
terminal symbols, VBZ and NP, as leaves whereas [VP [VBZ]] is not
a STF.

2.2.2 Shallow Semantic Tree Kernel (SSTK)

A shallow semantic tree fragment (SSTF) is almost identical to
a STF, the difference being that the contribution of special nodes
labeled with null should be zero. This is necessary as the SSTK
is applied to special trees containing SLOT nodes, which, when
empty, have children labeled with null. Two steps are modified in
the algorithm:

0. if n1 (or n2) is a pre-terminal node and its child label is null,
∆(n1, n2) = 0;

3. ∆(n1, n2) =
Ql(n1)

j=1 (1 + ∆(cn1
(j), cn2

(j))) − 1,

2.2.3 Partial Tree Kernel (PTK)

If we relax the production rule constraint over the STFs, we ob-
tain a more general substructure type called partial tree fragment
(PTF), generated by the application of partial production rules, e.g.
[VP [VBZ [is]]] in Figure 2. The ∆ function for PTK is relatively

simple. Given two nodes n1 and n2, STK is applied to all possi-
ble child subsequences of the two nodes, i.e. the String Kernel is
applied to determine the subsequences and the STK is applied on
each of such child substrings. More formally:

1. if the node labels of n1 and n2 are different then ∆(n1, n2) =
0;

2. else ∆(n1, n2) =

1 +
X

~I1,~I2,l(~I1)=l(~I2)

l(~I1)
Y

j=1

∆(cn1
(~I1j), cn2

(~I2j))

where ~I1 = 〈h1, h2, h3, ..〉 and ~I2 = 〈k1, k2, k3, ..〉 are index
sequences associated with the ordered child sequences cn1

of n1

and cn2
of n2, respectively, ~I1j and ~I2j point to the j-th child in

the corresponding sequence, and, again, l(·) returns the sequence
length, i.e. the number of children.

Furthermore, we add two decay factors: µ for the depth of the
tree and λ for the length of the child subsequences with respect to
the original sequence, i.e. we account for gaps. It follows that

∆(n1, n2)=µ
“

λ
2+

X

~I1,~I2,l(~I1)=l(~I2)

λ
d(~I1)+d(~I2)

l(~I1)
Y

j=1

∆(cn1
(~I1j), cn2

(~I2j))
”

,

where d(~I1) = ~I1l(~I1) − ~I11 and d(~I2) = ~I2l(~I2) − ~I21. This way,

we penalize both larger trees and child subsequences with gaps2.

2.3 Kernel Engineering
Kernel engineering can be carried out by combining basic ker-

nels with additive or multiplicative operators or by designing spe-
cific data objects (vectors, sequences and tree structures) for the
target tasks.

It is worth noting that kernels applied to new structures produce
new kernels as shown hereafter. Let K(t1, t2) = φ(t1) · φ(t2) be
a basic kernel, where t1 and t2 are two trees. If we map t1 and
t2 into two new structures s1 and s2 with a mapping φM (·), we
obtain: K(s1, s2) = φ(s1) · φ(s2) = φ(φM(t1)) · φ(φM (t2)) =
φ′(t1) · φ′(t2)=K′(t1, t2), which is a noticeably different kernel
induced by the mapping φ′ = φ ◦ φM .

For instance, in the next section, we will define the novel PASPTK

and POSSK kernels by applying PTK and SK to innovative struc-
tures, i.e. predicate argument structures and sequences of Part of
Speech Tags, respectively.

3. RELATIONAL REPRESENTATIONS FOR

QUESTION AND ANSWER PAIRS
Capturing the relationships between two text fragments is a com-

plex task. Some work regarding the relation between question and
answer has been carried out in [29, 13, 42]. In such work, the an-
swer extraction step is implemented by means of unsupervised ap-
proaches which measure the relevance between questions and an-
swers. However, learning to classify if an answer is correct for a
question (the problem will be formally defined in the next section)
is conceptually different from extraction in that not only the relat-
edness between the target question and answer is taken into account
but also the other Q/A training pairs are used. The similarity be-
tween pairs clearly depends on syntactic and semantic properties;
thus, in addition to the usual bag-of-words (BOW), we study meth-
ods to capture Q/A structures using String Kernels over word and
POS-tag sequences and tree kernels over full syntactic parse trees
(PTs) and shallow semantic trees.

2An efficient algorithm for its computation is given in [25].
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Figure 3: Compact PASPTK structures of s1 (a) and s2 (b) and some fragments they have in common as produced by the PTK (c).

Arguments are replaced with their most important word (or semantic head) to reduce data sparseness.

3.1 The Classification of Paired Texts
A Q/A classifier receives pairs 〈q, a〉 as input and judges if the

answer a correctly responds to the query q. For its design, a set
of examples of correct and incorrect pairs is needed. The learning
algorithm operates by comparing the content of questions and the
content of answers in a separate fashion rather than just comparing
a question with its corresponding candidate answers. In a learning
framework where kernel functions are deployed, given two pairs
p1 = 〈q1, a1〉 and p2 = 〈q2, a2〉, a kernel function is defined as
K(p1, p2) = Kτ (q1, q2) ⊕ Kα(a1, a2), where Kτ and Kα are
kernel functions defined over questions and over answers, respec-
tively, and ⊕ is a valid operation between kernels, e.g. sum or
multiplication.

In Section 2, we described sequence and tree kernels, which can
be applied to the sequential and tree representations of questions
and answers, respectively. In the following section we describe
several of such linguistically motivated representations.

3.2 Representation with Word and POS-tag
sequences and Trees

For a basic syntactic and semantic representation of both ques-
tions and answers, we propose two different kernels: the Part of
Speech Sequence Kernel (POSSK) and Word Sequence Kernel
(WSK). The former is obtained by applying the String Kernel on
the sequence of POS-tags of a question or answer. For example,
given the sentence s0: What is autism?, the associated POS se-
quence is WP AUX NN ? and some of subsequences extracted by
POSSK are WP NN or WP AUX. WSK is applied to word sequences
of both questions and answers; given s0, sample substrings are:
What is autism, What is, What autism, is autism, etc.

A more complete structure is the full parse tree (PT) of the sen-
tence, that constitutes the input of the STK. For instance, the STK
accepts the syntactic parse, (SBARQ (WHNP (WP What))(SQ (VP

(AUX is)(NP (NN autism))))(. ?)), and extracts from it all possible
tree fragments (STFs).

3.3 Shallow Semantic Representation
Our semantic representation takes into account that definitions

are characterized by a latent semantic structure, thanks to which
similar concepts result in structurally similar formulations. Pre-
cisely, understanding whether a candidate answer is correct for a
definition question would imply knowing the correct definition and
comparing the current candidate to the former. When such informa-
tion is unavailable (as in open domain QA) the learning algorithm
must mimic the behavior of a human (who does not know the exact
definition) and check whether such answer is formulated as a “typ-
ical” definition and whether answers defining similar concepts are
expressed in a similar way. A method to capture sentence structure
[2] is the use of predicate argument structures described hereafter.

3.3.1 Predicate Argument Structures

Shallow approaches to semantic processing are making large strides
in the direction of efficiently and effectively deriving tacit semantic
information from text. Large data resources annotated with levels

of semantic information as in the FrameNet [16] and ProbBank [19]
projects, make it possible to design systems for the automatic ex-
traction of predicate argument structures (PASs)[5].

Such systems identify predicates (e.g. verbs) and their argu-
ments in a sentence. For example, in the English sentence, ‘John
likes apples.’, the predicate is ‘likes’ whereas ‘John’ and ‘apples’,
bear the semantic role labels agent (ARG0) and theme (ARG1).
The crucial fact about semantic roles is that regardless of the overt
syntactic structure variation, the underlying predicates remain the
same. Hence, for the sentence ‘John opened the door’ and ‘the door
opened’, although ‘the door’ is the object of the first sentence and
the subject of the second, it is the ‘theme’ in both sentences. Same
idea applies to passive constructions.

To represent PASs in the learning algorithm, we consider two
trees: Shallow Semantic Trees for SSTK and Shallow Semantic
Trees for PTK, both according to PropBank definition, indicated
as PASSSTK and PASPTK , respectively. These are automatically
generated by our system. As an example, let us consider the sen-
tence (from our QA TREC corpus)
s1: Autism is characterized by a broad spectrum of behavior that includes

extreme inattention to surroundings and hypersensitivity to sound and other

stimuli.,
which results in the PB annotation:
[A1 Autism] is [rel characterized] [A0 by a broad spectrum of behavior]

[R−A0 that] [relincludes] [A1 extreme inattention to surroundings and

hypersensitivity to sound and other stimuli].

Such annotation can be used to design a shallow semantic repre-
sentation that can be matched against other semantically similar
sentences, e.g.
s2: Panic disorder is characterized by unrealistic or excessive anxiety.

This results in the PB annotation:
[A1 Panic disorder] is [rel characterized] [A0 by unrealistic or excessive

anxiety].

It can be observed here that, although autism is a different disease
from panic disorder, the structure of both definitions and the latent
semantics they contain (inherent to behavior, disorder, anxiety) are
similar. So for instance, s2 appears as a definition even to someone
who only knows what the definition of autism looks like.

The above annotation can be compactly represented by predicate
argument structure trees (PASs) such as those in Figure 3. Here, we
notice that the semantic similarity between sentences is explicitly
visible in terms of common fragments extracted by PTK from their
respective PASs.

An equivalent PAS representation (PASSSTK) compatible with
SSTK (see Section 2.2.2) was introduced in [28] (see Figure 4).
Here, arguments follow a fixed ordering (i.e. rel, A0, A1, A2, . . . )
and a layer of SLOT nodes “artificially” allows SSTK to generate
structures containing subsets of arguments. PASPTK is semanti-
cally equivalent to PASSSTK but PTK is able to extract a richer
set of features which take gaps into account, (compare the first two
fragments of Figures 3.(c) and 4). Moreover, PASPTK does not
need SLOT nodes to extract fragments containing argument sub-
sets. This results in a visibly more compact representation (com-
pare Figures 3.(b) and 4). Moreover, the accuracy of computing the
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Figure 4: PASSSTK of s2 and some of its fragments produced

by the SSTK.

matches between two PASs can only improve as only nodes that are
actually useful are represented.

4. EXPERIMENTS
Our experiments aim at studying the impact of kernel methods

applied to linguistic representations for the detection of QA rela-
tions. In particular, we first show that our new shallow semantic
tree kernel is far more efficient and effective than previously pro-
posed kernels for shallow semantic processing. Then, we study
the impact of the new Part of Speech Tagging sequence kernel, the
Word Sequence Kernel and novel kernel combinations for QA clas-
sification. Finally, since the obvious use of the above classifier is to
improve the answer extraction phase, we experimented with it and
a basic QA system.

4.1 Experimental Setup
We implemented the String Kernel (SK), the Syntactic Tree Ker-

nel (STK), the Shallow Semantic Tree Kernel (SSTK) and the Par-
tial Tree Kernel (PTK) described in Section 2 in our SVM-Light-
TK toolkit, available at disi.unitn.it/moschitti (which is
based on SVM-Light [15] software). Each kernel is associated with
diverse input objects:

• the linear kernel is used with the bag-of-words (BOW) or
bag-of-POS-tags (POS) features;

• SK is used with word sequences (WSK) and POS sequences
(POSSK);

• STK is used with syntactic parse trees (PTs) automatically
derived with Charniak’s parser;

• SSTK and PTK are applied to two different PASs (see Sec-
tion 3.3), i.e. PASSSTK and PASPTK , automatically derived
with our SRL system [27].

Kernel combinations are obtained by simply summing the target
kernels. In particular, since answers often contain more than one
PAS (see Figure 3), we sum PTK (or SSTK) applied to all pairs
P1×P2, where P1 and P2 are the set of PASs of the first and second
answer3. Although different kernels can be used for questions and
answers, we used (and summed together) the same kernels except
for those based on PASs, which are only used on answers.

4.1.1 Datasets

To train and test our text QA classifiers, we designed two datasets
containing answers for definitional questions only (available at disi
.unitn.it/~silviaq/resources.html). These are among the
most complex and interesting in the literature [18, 9] as they require
deeper linguistic processing than factoid answers. We chose them
since the models for the solution of factoid questions may be too

3More formally, let Pt and Pt′ be the sets of PASs extracted
from text fragments t and t′; the resulting kernel will be
Kall(Pt, Pt′) =

P

p∈Pt

P

p′∈P
t′

SSTK(p, p′).

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

220 

240 

200 400 600 800 1000 1200 1400 1600 1800 

T
im
e
 i
n
 S
e
c
o
n
d
s
 

Number of Training Instances 

PTK (training) PTK (test) 

SSTK (test) SSTK (training) 

Figure 5: Efficiency of PTK and SSTK

easy, e.g. simple language model approaches along with the use of
a named entity recognizer may be sufficient.

The datasets were created by first collecting the 138 TREC 2001
test questions labeled as “description” in [23] (one of the largest
available corpus of description questions) and, for each question,
by gathering the top 20 answer paragraphs extracted by our basic
QA system (BQAS).

BQAS was run on two sources: Web documents by utilizing
Google (code.google.com/apis/) and the AQUAINT data used
for TREC’07 (trec.nist.gov/data/qa) by exploiting Lucene
(lucene.apache.org), yielding two QA classification corpora,
namely WEB and TREC. Each paragraph was manually evaluated
based on whether it contained an answer to the corresponding ques-
tion. To simplify the classification problem, for each paragraph, we
isolated the sentence with the maximal judgment4 and labeled it as
positive if it answered the question either concisely or with noise or
as negative otherwise. The WEB corpus contains 1309 sentences,
416 of which are positive5 answers and the TREC-QA corpus con-
tains 2256 sentences, 261 of which are positive.

4.1.2 Measures and Parameterization

The accuracy of the classifiers is provided by F1 whereas the QA
system performance is measured in terms of the Mean Reciprocal
Rank (MRR)6. All values reported on tables refer to the average of
5 different samples using 5-fold cross-validation whereas typically
each plot refers to a single fold.

We carried out some preliminary experiments of the basic ker-
nels on a validation set and we noted that the F1 was maximized
by using the default cost parameters (option -c of SVM-light), λ =
0.04 and µ = 0.4 (see Section 2). The trade-off parameter varied
according to different kernels on WEB data (so it needed an ad-hoc
estimation) whereas a value of 15 was optimal for any kernel on
TREC corpus.

4.2 Shallow Semantic Kernel Efficiency
To make the use of kernels for the processing of semantic in-

formation practical, we designed PASPTK , which is specifically
designed for PTK. This is more compact than PASSSTK and can
be efficiently processed by PTK. In contrast, SSTK runs on large

4In case more than one sentence in the paragraph had the same
judgment, we chose the first one.
5For instance, given the question “What are invertebrates?”, the
sentence “At least 99% of all animal species are invertebrates, com-
prising . . . ” was labeled “-1” , while “Invertebrates are animals
without backbones.” was labeled “+1”.
6MRR = 1

n

Pn

i=1
1

rki
, where n is the number of questions and

rki is the rank of the first correct answer to question i.



WEB Question/Answer Classification Corpus

BOW POS POSSK WSK PT PASSST K PASP TK BOW+POS BOW+PT POSSK +PT WSK+PT PT+PASSSTK PT+PASPT K

+WSK +WSK
65.3±2.9 56.8±0.8 62.5±2.3 65.7±6.0 65.1±3.9 52.9±1.7 50.8±1.2 63.7±1.6 66.0±2.7 65.3±2.4 66.6±3.0 68.0±2.7 68.2±4.3

TREC Question/Answer Classification Corpus

+POSSK +POSSK

24.2±3.1 29.8±5.8 32.8±6.9 25.3±3.8 33.8±4.5 21.8±3.7 23.6±4.7 28.3±4.2 30.2±5.3 36.4±9.3 32.9±7.8 36.2±7.1 39.1±6.9

Table 1: F1 ± Std. Dev. of the question/answer classifier according to several kernels on the WEB and TREC corpora.

structures containing as many slots as the number of possible pred-
icate argument types. This impacts on the memory occupancy as
well as on the kernel computation speed. PTK is able to process
the same information with much smaller structures.

To test the above mentioned characteristics, we divided the train-
ing (TREC) data in 9 bins of increasing size (200 instances between
two contiguous bins) and we measured the learning and testing
time7 for each bin. Figure 5 shows that in both the classification
and learning phases, PTK is much faster than SSTK. With all train-
ing data, SSTK employs 487.15 seconds whereas PTK only uses
12.46 seconds, i.e. it is about 40 times faster, making the experi-
mentation of SVMs with large datasets feasible.

To completely assess the benefit of PASPTK with respect to
PASSSTK , we also need to compare them in terms of classification
accuracy. In the next section, we extensively test several kernels
and their combinations.

4.3 Results for Question/Answer Classification
In these experiments, we tested different kernels and some of

their most promising combinations. Since the nature of the type
of the applied kernels strongly depends on the data they operate
on, we simplify our notation by using only the name of the repre-
sentation instead of using the more appropriate name combination
(representation and kernel). In other words, we used BOW, POS
and PT to indicate that a linear kernel is applied to bag-of-words
and POS vectors and the syntactic tree kernel is applied to parse
tree (PT).

The other kernel names show a subscription indicating the ap-
plied kernel, i.e. POSSK , PASSSTK and PASPTK . This suggests
that SK is applied to POS sequences and that SSTK and PTK are
applied to the PAS structures. The only exception is WSK indicat-
ing the Word Sequence Kernel, i.e. a string kernel applied to word
sequences.

As kernel combinations, we used the sum between kernels8 since
it yields the joint feature space of the individual kernels [30].

Table 1 shows the average F1 ± the standard deviation over 5-
folds on Web (and TREC) data of SVMs using different kernels.
We note that:

• BOW achieves very high accuracy, comparable to the one
produced by PT, i.e. 65.3 vs 65.1;

• the BOW+PT combination achieves 66.2, improving both
BOW and PT but BOW+POS produces a lower F1, i.e. 63.7,
than PT and BOW, indicating that POS does not provide use-
ful information for this dataset;

• WSK improves (65.7) BOW and their sum is enhanced by
WSK+PT (66.6), demonstrating that word sequences and PTs
are very relevant for this task;

7Processing time in seconds of a Mac-Book Pro 2.4 Ghz.
8All additive kernels are normalized to have a similarity score be-

tween 0 and 1, i.e. K′(X1, X2) = K(X1,X2)√
K(X1,X1)×K(X2,X2)

.

• both PASSSTK and PASPTK improve BOW yielding the
highest results, i.e. about 68.

The above findings are interesting as the syntactic information
provided by STK and the semantic information brought by WSK
and PASPTK improve on BOW. The high accuracy of BOW is sur-
prising if we consider that at classification time, instances of the
training models (e.g. support vectors) are compared with different
test examples since questions cannot be shared between training
and test set9. Therefore the answer words should be different and
useless to generalize rules for answer classification. However, error
analysis revealed that although questions are not shared between
training and test set, there are common patterns in the answers due
to typical Web page patterns which indicate if a retrieved passage
is an incorrect answer, e.g. Learn more about X.

Although the ability to detect these patterns is beneficial for a QA
system as it improves its overall accuracy, it is slightly misleading
for our study. Thus, we experimented with the TREC corpus which
does not contain Web extra-linguistic texts and it is more complex
from a QA task viewpoint (it is more difficult to find a correct an-
swer).

Table 1 also shows the classification results on the TREC dataset.
A comparative analysis suggests that:

• the F1 of all models is much lower than for the Web dataset;

• BOW shows the lowest accuracy (24.2) and also the accuracy
of its combination with PT (30.2) is lower than the one of PT
alone (32.8);

• additionally, when BOW is summed to POS (29.8) produces
a lower result (28.3);

• SK is beneficial for exploiting POS information as POSSK+PT
(36.4) improves on POS and PT.

Finally, PAS adds further information as the best model is POSSK+
PT+PASPTK , which improves BOW from 24.2 to 39.1, i.e. 61%.

4.3.1 Precision/Recall Curves

To better study the benefit of the proposed linguistic structures,
we also plotted the Precision/Recall curves. Figure 6 shows the
curves of some interesting kernels for four (out of five) folds of the
Web dataset. As expected, BOW almost always shows the lowest
curves (on 3 folds). Anyway, its relevant contribution is evident:
when summed to PT, it produces the highest curves on folds 1 and
2. Moreover, WSK, which is able to exploits n-grams (with gaps),
summed to PT produces very high curves10 (see folds 3 and 4).
In summary, all the kernel combinations tend to achieve slightly
higher result than BOW. Again, the cause is the high contribution
of BOW, which prevents the other models to clearly emerge.

9Sharing questions between test and training sets would be an er-
ror from a machine learning perspective as we cannot expect new
questions to be identical to those in the training set.

10Some of the kernels have been removed from the figures so that
the plots result more visible.
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Figure 6: Precision/Recall curves of some kernel combinations over 4-folds of the WEB dataset.

The results on TREC in Figure 7 are more interesting. The con-
tribution of BOW is always very low and thus the difference in
accuracy with the other linguistic models is more evident. POSSK

+PT+PASPTK , which encodes the most advanced syntactic and se-
mantic information, shows a very high curve outperforming all the
others (see folds 1, 3 and 4). Only, in Fold 2, the plots are close and
POSSK+PT shows a competitive curve.

The analysis of the above results suggests that: first as expected,
BOW does not prove very relevant to learn re-ranking functions
from examples; while it is useful to establish the initial ranking by
measuring the similarity between question and answer, it is almost
irrelevant to capture typical rules that suggest if a description is
valid or not. Indeed, since test questions are not in the training set,
their words as well as those of candidate answers will be different,
penalizing BOW models. In these conditions, we need to rely on
syntactic structures which at least allow for detecting well formed
descriptions.

Second, the results show that PT is important to detect typical
description patterns but POS sequences also provide additional in-
formation since they are less sparse than tree fragments. Such pat-
terns improve on the bag of POS-tags by about 4% (see POS vs
POSSK on TREC data). This is a relevant result considering that
in standard text classification bigrams or trigrams are usually inef-
fective.

Third, although POSSK+PT generates a very rich feature set,
i.e. POS patterns provided by SK and tree fragments generated by
STK, PASPTK is still able to significantly improve the classifica-
tion F1 by about 3%, suggesting that shallow semantics can be very
useful to detect if an answer is well formed and is related to a ques-
tion. Error analysis revealed that PAS can provide patterns like:
- A1(X) R-A1(that) rel(result) A1(Y)

- A1(X) rel(characterize) A0(Y),
where X and Y need not necessarily be matched.

Finally, the best model, POSSK+PT+PASPTK , improves on BOW
by 61%. This is strong evidence that complex natural language
tasks require advanced linguistic information that should be ex-
ploited by powerful algorithms such as SVMs and by effective fea-
ture engineering techniques such as kernel methods.

4.4 Re-ranking Question Answering Output
In these experiments, we assess the impact of the binary QA

classifiers learned during the previous experiments when used as
re-rankers. Our classifier-based re-ranking algorithm proceeds as
follows. Starting from the top answer in the ranked list elaborated
by BQAS, if the answer is classified as correct by the learned clas-
sifier, its rank is unchanged; otherwise the answer is pushed down,
until the next answer labeled as incorrect according to the classifier
is found.
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Figure 7: Precision/Recall curves of some kernel combinations over 4-folds of the TREC dataset.

Tables 2 and 3 report the classification F1 of the answer clas-
sifier (Column Class. F1) and the MRR of the QA systems. In
case of IR and BQAS, Class. F1 is equal to the accuracy, i.e. the
number of retrieved correct answers divided by the number of re-
trieved answers, whereas in case of the Re-ranker rows, Class. F1
refers to the question/answer classifier F1 (using BOW and the best
model, respectively). Moreover, for the re-rankers, the MRR col-
umn refers to BQAS to which the BOW or the best re-rankers are
applied.

From the Class. F1 column, it is visible that BQAS improves
on the baseline IR engines, but the learned Q/A classifiers reach an
almost double F1, i.e. 68.2 vs 36.8 on the WEB dataset (Table 2)
and 39.1 vs 22.9 on the TREC dataset (Table 3). This suggests that
re-rankers based on the classifiers draw more information from the
available data with respect to BQAS. However, the real test of the
usefulness of the binary classifiers learned in the previous sections
must be measured in terms of the improvement of MRR of BQAS
after answer re-ranking.

In the MRR column of Table 2, we first report our baseline rank-
ing performance for the WEB dataset. We see that the IR engine
(Google) ranking is outperformed by BQAS since Google ranks is
based on the entire documents rather than the more accurate single
passages. In the last 2 rows, we show the MRR of the re-rankers
obtained by using the BOW and the best models (see Section 4.3)

for re-ranking, respectively. With the BOW model, the re-ranker
achieves 77.4%, i.e. an improvement of 21% over the ranking of
BQAS; however, when the best re-ranking algorithm is applied, we
achieve 81.1%, i.e. an impressive 25% of improvement over the
baseline (Table 2). This shows that the additional structural infor-
mation provided by the best model improves the performance of
the re-ranker, which, in turn, improves the QA system.

In the TREC dataset (Table 3), the IR engine (Lucene) is also
remarkably outperformed by BQAS; however, the BOW re-ranker
yields a further improvement despite the fact that the corresponding
F1 measure is not extraordinary. Furthermore, the best re-ranker
model produces an improvement of about 4% over BQAS, i.e. a
further 2% improvement over the BOW re-ranker (Table 3). The
lower improvement on MRR of the best TREC re-ranker can be
explained by its lower absolute classification accuracy than the Web
re-ranker. This is due to the higher complexity of the TREC dataset.

5. RELATED WORK
Early work on using syntax and semantics in Information Re-

trieval was carried out in [39, 40, 34] and in [36, 35]. The results
showed that the use of advanced linguistic information is not ef-
fective for document retrieval. In contrast, Question Answering
work shows that semantic and syntax are essential to retrieve punc-
tual answers, e.g [13, 41, 33]. However, successful approaches in



Class. F1 MRR

IR (Google) 35.9±4.0 49.0±3.8
BQAS 36.8±3.6 56.2±3.2
Re-ranker (BOW) 65.3±2.9 77.4±2.7
Re-ranker (best) 68.2±4.3 81.1±2.1

Table 2: Classifier F1 and MRR (± Std. Dev.) of IR engine, BQAS,

BOW resp. best re-ranker in WEB

Class. F1 MRR

IR (Lucene) 21.3±1.0 16.2±3.4
BQAS 22.9±1.5 30.3±8.9
Re-ranker (BOW) 24.2±3.1 32.8±7.7
Re-ranker (best) 39.1±6.9 34.2±10.6

Table 3: Classifier F1 and MRR (± Std. Dev.) of IR engine, BQAS

BOW resp. best re-rankers in TREC

TREC are based on many interconnected modules exploiting com-
plex heuristics and fine tuning. The effective combination of such
modules strongly depends on a manual setting, which is not often
discussed or published. This prevents us from deriving general and
useful findings on the use of natural language processors to model
syntactic and semantic structures for retrieval tasks.

In our study, we avoid this problem by focusing on only one
module of Question Answering, which can actually be seen as a
typical Text Categorization task, i.e. the classification of pairs of
text fragments constituted by question and answer. Since some
kinds of questions can be solved with relatively simple representa-
tions, i.e. without the use of syntactic and semantic structures, we
focus on the more complex task of processing definitional questions
[3, 6, 31, 2, 28, 24]. In particular, the last four articles use predi-
cate argument structures for re-ranking the answer lists, reporting
significant improvement.

To our knowledge, our work in [28] is the only one using kernel
methods for answer re-ranking. We used a syntactic tree kernel and
a shallow semantic tree kernel based on predicate argument struc-
tures for re-ranking design. However, we only experimented with
a Question Answering corpus derived from Web documents and
the reported improvement, although significant, did not justify the
adoption of relatively computationally expensive approaches like
SVMs and kernel methods. In this paper, we have experimented
with many more kernel types and with both Web and TREC docu-
ments and we could show that the potential improvement reachable
by our approach is much higher (about 61% over BOW). Moreover,
we have designed a faster kernel for the processing of semantic in-
formation.

In summary, the main property of our approach with respect to
previous work on the use of syntactic and semantic structures is
that we can define them without requiring a thorough linguistic
analysis. We do not carry out feature engineering since we sim-
ply let kernel functions generate a large feature set (tree fragments
or substrings) which effectively represent the semantic/syntactic in-
formation. The feasibility of this approach is due to the SVM the-
ory which makes the learning algorithm robust to many irrelevant
features (often produced by the NLP errors).

6. CONCLUSION
In this paper, we study several types of syntactic/semantic in-

formation: bag-of-words (BOW), bag-of-POS tags, syntactic parse
trees and predicate argument structures (PASs), for the design of
automatic question/answer pair classifiers. In addition, we investi-
gate the role that syntax and semantics can play in modern Infor-
mation Retrieval systems. These binary classifiers can select the

correct answers from those provided by a basic QA system, thus
improving the final system accuracy.

Our learning framework is constituted by Support Vector Ma-
chines (SVMs) and kernel methods applied to automatically gen-
erated syntactic and semantic structures. On the one hand, SVMs
are robust to irrelevant/noisy features, which are inevitably con-
tained in automatically generated linguistic structures. On the other
hand, kernel methods allow for the extraction of many features
from structured data, thus alleviating the manual design. In par-
ticular, we designed (i) a new shallow semantic kernel which is
faster and more accurate than those previously proposed; (ii) a new
sequence kernel over POS tags to encode shallow syntactic infor-
mation; (iii) many kernel combinations (to our knowledge no previ-
ous work uses so many different kernels) which allow for the study
of the role of several linguistic levels in a well defined statistical
framework. In addition, we tested the above models on two dif-
ferent question classification corpora derived from Web and TREC
documents, respectively, by also measuring their impact on a basic
QA system.

The results suggest that:
• the new kernel for processing PASs is more efficient and ef-

fective than previous models so that it can efficiently be used in
answer re-ranking systems.
• Kernels based on PAS, POS-tag sequences and syntactic parse

trees improve on BOW on both datasets. On the TREC data the
improvement is interestingly high, e.g. about 61%, making their
application in retrieval systems worthwhile. Note that this goes
far beyond our previous findings since in them we only observed a
small accuracy increase over Web documents.
• Error analysis revealed that Web documents are slightly mis-

leading in determining the role of linguistic structures since they
contain many extra-linguistic patterns, e.g. "Learn more about X"
which are easily captured by BOW. Thus, although the correctness
of a definition does not heavily depend on words but rather on struc-
tures, BOW model is needed to carry out an important first level of
answer filtering.
• Our best question/answer classifier, used as re-ranker, signifi-

cantly improves the QA system accuracy, demonstrating its promis-
ing applicability.

Finally, the mathematical elegance of kernel methods allow for
the separation of data, e.g. our presented linguistic structures, which
are easily understood, from the feature space, which is automat-
ically generated. The latter may be complex to study since it is
implicitly generated but at the same time it is easy to use thanks to
the availability of basic kernel functions for structured data.
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