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ABSTRACT
Supervised learning applied to answer re-ranking can highly
improve on the overall accuracy of question answering (QA)
systems. The key aspect is that the relationships and prop-
erties of the question/answer pair composed of a question
and the supporting passage of an answer candidate, can
be efficiently compared with those captured by the learnt
model. In this paper, we define novel supervised approaches
that exploit structural relationships between a question and
their candidate answer passages to learn a re-ranking model.
We model structural representations of both questions and
answers and their mutual relationships by just using an off-
the-shelf shallow syntactic parser. We encode structures in
Support Vector Machines (SVMs) by means of sequence and
tree kernels, which can implicitly represent question and an-
swer pairs in huge feature spaces. Such models together with
the latest approach to fast kernel-based learning enabled
the training of our rerankers on hundreds of thousands of
instances, which previously rendered intractable for kernel-
ized SVMs. The results on two different QA datasets, e.g.,
Answerbag and Jeopardy! data, show that our models de-
liver large improvement on passage re-ranking tasks, reduc-
ing the error in Recall of BM25 baseline by about 18%. One
of the key findings of this work is that, despite its simplicity,
shallow syntactic trees allow for learning complex relational
structures, which exhibits a steep learning curve with the
increase in the training size.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: [Language parsing
and understanding, Text analysis]

General Terms
Algorithms, Experimentation

Keywords
Question Answering, Kernel Methods, Large-Scale Learn-
ing, Support Vector Machines, Structural Kernels
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1. INTRODUCTION
A critical step for the design of Question Answering (QA)

systems is the passage retrieval and ranking module as even
the most powerful approach to answer extraction would in-
evitably fail if applied to an input passage that either con-
tains no correct answer or simply is not adequate for sup-
porting its correctness. Traditional approaches exploit sim-
ilarity measures between a question and an answer passage
but of course they show obvious limitations, e.g., the pas-
sage: Ron Paul is not the president of the U.S., is neither the
correct passage nor contains the right answer to the ques-
tion, Who is the president of the U.S.? but it would be easily
ranked in the first position according to word overlap mea-
sures. TREC QA track 1 has shown that models using syn-
tactic structures can help to overcome the limitations of pure
similarity-based models. Unfortunately, syntactic represen-
tations are difficult to design when the answer is supported
by multiple sentences as (i) discourse processing still requires
development to reach a sufficient level of performance and
(ii) language models taking into account the dependencies
between words spanning several sentences (i.e., long distance
dependencies) are rather difficult to model. For example, let
us consider a real question-answer pair from the Answerbag
community-based QA collection2 (we will use it as a running
example throughout the rest of the paper):

Q1: Is movie theater popcorn vegan?

A1: Any movie theater popcorn that includes butter and there-
fore dairy products is not vegan. However, the popcorn ker-
nels alone can be considered vegan if popped using canola,
coconut or other plant oils which some theaters offer as an
alternative to standard popcorn.

An individual analysis of the two answer sentences produces
both a positive and a negative piece of evidence making the
answer passage candidate unreliable (and thus it would be
ranked lower3 than other candidates). In contrast, the avail-
ability of the cross-sentential structure pocorn is not vegan,
however would suggest that the candidate is promising as it
solves the contradiction. Unfortunately, handcrafting these
patterns or rules is not cost-effective and typically requires
to replicate the effort when the application domain changes.

A viable alternative is to apply supervised methods to
learn answer/passage rerankers, e.g., [35, 15]. Nevertheless,

1http://trec.nist.gov/data/qa.html
2http://www.answerbag.com
3Very simple models would unawarely rank it in top position
for the repeated presence of the words popcorn and vegan.



machine learning algorithms applied to similarity scores be-
tween questions and answers would not be able to learn pat-
terns such as the one above. In contrast, in [23], we proposed
to apply structural kernels [28] to the syntactic representa-
tion of question/answer passage pairs. However, such model
could only take into account very short passages composed
of only one sentence and the experiments were carried out
on a small dataset of about 2,000 examples. Most impor-
tantly, we did not considered the relational information link-
ing question and answer passages.

In this paper, we define novel relational structural models
for passage re-ranking in QA systems based on supervised
machine learning. We train our models using structural rep-
resentations of question and answer passages, which can in-
clude multiple sentences. We utilize an off-the-shelf shallow
syntactic parser to group words in sentences’ constituents,
which in turn are organized in a tree structures. Based
on the näıve syntactic matching between the word lemmas
of a given question and its candidate answer, we mark the
corresponding constituents in the resulting tree to capture
similar semantic relationships between the two. This way
mutual structural relationships between a question and its
answer is made available in the tree nodes. To effectively
and efficiently use such structures in Support Vector Ma-
chines (SVMs), we apply structural kernels, e.g., sequence
and tree kernels.

We experimented with our models and the fast SVM al-
gorithm for structural kernels, which allowed us to train our
rerankers on datasets up to hundreds of thousands instances.
The results on two different QA datasets: Answerbag and
Jeopardy! show that our models deliver significant improve-
ments on passage re-ranking tasks, highly improving two dif-
ferent baselines, i.e., reducing the error in Recall by about
18-20% of BM25 and Watson primary search [11], respec-
tively. The very interesting aspect is that the learning curves
show that (i) complex relational structures can be learned
using large data and (ii) further improvement is possible
using more data.

In the remainder of the paper, Section 2 reports on the
related work, Section 3 introduces kernel methods for struc-
tured data, Section 4 presents our models for re-ranking
passages/answers, including the question/answer relational
model, Section 5 illustrates our experiments and finally Sec-
tion 6 derives our conclusions.

2. RELATED WORK
The study carried out in this paper primarily focuses on

the use of shallow syntactic/semantic structures for training
answer re-ranking with large data. Early related work on
the use of syntax and semantics in Information Retrieval was
carried out in [38, 39, 32] and in [34, 33]. The results showed
that the use of advanced linguistic information was not ef-
fective for document retrieval. In contrast, QA work shows
that semantics and syntax are essential to retrieve concise
answers, e.g., [14, 40, 31]. However, successful approaches
in TREC-style systems were based on several interconnected
modules exploiting complex heuristics and fine tuning. The
effective combination of such modules was strongly depen-
dent on manual setting, which often remained undisclosed.

In our study, we focus on passage re-ranking that can be
plugged into virtually any QA system. It can also be di-
rectly used as a back-end reranker for ranking non-factoid
answers. Reranking can be seen as a typical text categoriza-
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Figure 1: A shallow syntactic tree

tion task, i.e., the classification of pairs of text fragments
constituted by a question and an answer or pairs of ques-
tions, e.g., [25, 15]. In this context, a large body of work
regards definition/description questions, e.g., [4, 6, 29, 1, 23,
35].

In [6], answer ranks were computed based on the proba-
bilities of bigram language models generating candidate an-
swers. Language modeling was also applied to definitional
QA in [9] to learn soft pattern models based on bigrams.
Other related work, such as [26, 36], was also very tied to
bag-of-words features. Our approach is different from the
above as we are able to automatically learn structural rela-
tionships between a question and candidate answer passages.
Such relationships have also been targeted in [10] by creat-
ing ad-hoc joint question-answer representations. Addition-
ally, [29, 1, 35] report significant improvement by exploit-
ing expensive linguistic approaches, e.g., predicate argument
structures, for re-ranking candidate answer lists. Our work
in [23, 21] was the first to exploit kernel methods for model-
ing answer re-ranking using syntactic and shallow semantic
tree kernels based on predicate argument structures. How-
ever, our method lacked the use of important relational in-
formation between a question and a candidate answer, which
is essential to learn accurate relational patterns. Addition-
ally, the low computational efficiency of such approach pre-
vented its application to large datasets. In contrast, we inte-
grate our shallow tree re-ranking models within a much more
efficient training algorithm for SVMs with structural kernels,
which allows us to carry out experiments on much larger
datasets (several hundred thousands examples). Along with
our relational representation this appears to be the key as-
pect for the high improvement over basic models. Finally,
models for factoid questions using linguistic structures has
been carried out in [2, 3]. Again, the proposed methods rely
on manual design of features whereas our approach is more
general for passages and/or answer re-ranking.

In summary, the main distinctive property of our approach
with respect to the previous work adopting syntactic and
semantic structures is that we can define the latter with-
out requiring neither a tedious manual linguistic analysis
nor computationally expensive linguistic processors. We
do not carry out feature engineering since we simply let
kernel functions automatically generate very large feature
sets (tree fragments or substrings) to effectively represent
structural syntactic/semantic information found in the ques-
tion/answer pairs. Moreover, our models can be trained on
larger datasets, which allows for high improvement over the
basic QA system.

Finally, structural kernels have been applied for several
natural language tasks, e.g., syntactic parsing [8, 17], Se-
mantic Role Labeling [19, 12, 13, 22], Relation Extraction
[24, 42], Pronominal Coreference [37], Recognizing Textual
Entailment (RTE) [18] and text categorization [5].

3. KERNELS FOR STRUCTURED DATA
Kernel methods and structural kernels, in particular, are
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Figure 3: Some tree fragments generated by PTK

very effective means for automatic feature engineering for
natural language texts. In kernel machines both learning
and classification algorithms only depend on the ability to
evaluate an inner product between instances, which corre-
sponds to computing a similarity score. In several cases,
the latter can be efficiently and implicitly handled by ker-
nel functions by exploiting the following dual formulation:∑

i=1..l yiαiφ(oi)φ(o)+b = 0, where oi and o are two objects,
φ is a mapping from the objects to feature vectors ~xi and
φ(oi)φ(o) = K(oi, o) is a kernel function implicitly defining
such mapping. In case of structural kernels, K determines
the shape of the substructures describing the objects above.
The most general kind of kernels used in NLP are string
kernels (SKs), e.g., [28], the Syntactic Tree Kernels (STKs)
[8] and the Partial Tree Kernels (PTKs) [20].

3.1 String Kernels
The String Kernels (SK) that we consider count the num-

ber of subsequences shared by two strings of symbols, s1

and s2. Some symbols during the matching process can be
skipped. This modifies the weight associated with the target
substrings as shown by the following SK equation:

SK(s1, s2) =
∑
u∈Σ∗

φu(s1) · φu(s2) =

=
∑
u∈Σ∗

∑
~I1:u=s1[~I1]

∑
~I2:u=s2[~I2]

λd( ~I1)+d( ~I2) (1)

where, Σ∗ =
⋃∞

n=0 Σn is the set of all strings, ~I1 and ~I2

are two sequences of indexes ~I = (i1, ..., i|u|), with 1 ≤ i1 <

... < i|u| ≤ |s|, such that u = si1 ..si|u| , d(~I) = i|u| − i1 + 1

(distance between the first and last character) and λ ∈ [0, 1]
is a decay factor.

It is worth noting that: (a) longer subsequences receive
lower weights; (b) some characters can be omitted, i.e., gaps;
(c) gaps determine a weight since the exponent of λ is the
number of characters and gaps between the first and last
character; and (c) the complexity of the SK computation
is O(mnp) [28], where m and n are the lengths of the two
strings, respectively and p is the length of the largest subse-
quence we want to consider.

SK applied to a sequence can derive useful dependencies
between its elements. For example, from the sequence of
words, of the question Q1, we can define the sequence [[is]

[movie] [theater] [popcorn] [vegan]], which generates
the subsequences, [[is] [movie]], [[is] [theater] [ve-

gan]], [[is] [vegan]], [[ movie] [popcorn] [vegan]] and
so on. Note that this corresponds to a language model over
words using skip n-grams.

3.2 Tree Kernels

Convolution Tree Kernels compute the number of common
substructures between two trees T1 and T2 without explicitly
considering the whole fragment space. For this purpose, let
the set F = {f1, f2, . . . , f|F|} be a tree fragment space and
χi(n) be an indicator function, equal to 1 if the target fi
is rooted at node n and equal to 0 otherwise. A tree-kernel
function over T1 and T2 is

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2),

where NT1 and NT2 are the sets of the T1’s and T2’s nodes,

respectively and ∆(n1, n2) =
∑|F|

i=1 χi(n1)χi(n2). The latter
is equal to the number of common fragments rooted in the
n1 and n2 nodes. The ∆ function determines the richness of
the kernel space and thus different tree kernels. Hereafter,
we consider the equation to evaluate STK and PTK4.

3.2.1 Syntactic Tree Kernels (STK)
To compute STK is enough to compute ∆STK(n1, n2) as

follows (recalling that since it is a syntactic tree kernels, each
node can be associated with a production rule): (i) if the
productions at n1 and n2 are different then ∆STK(n1, n2) =
0; (ii) if the productions at n1 and n2 are the same, and n1

and n2 have only leaf children then ∆STK(n1, n2) = λ; and
(iii) if the productions at n1 and n2 are the same, and n1 and

n2 are not pre-terminals then ∆STK(n1, n2) = λ
∏l(n1)

j=1 (1 +

∆STK(cjn1
, cjn2

)), where l(n1) is the number of children of n1

and cjn is the j-th child of the node n. Note that, since the
productions are the same, l(n1) = l(n2) and the computa-
tional complexity of STK is O(|NT1 ||NT2 |) but the average
running time tends to be linear, i.e., O(|NT1 | + |NT2 |), for
natural language syntactic trees [20].

For example, Figure 1 shows the shallow syntactic tree
of the question Q1. This is a flat tree encoding part-of-
speech tags and words. Figure 2 shows some of its fragments
generated by STK, highlighting an important limitation on
the type of substructures it can generate: production rules,
i.e., children of a node cannot be split in the substructures.

3.2.2 The Partial Tree Kernel
The computation of PTK is carried out by the following

∆PTK function: if the labels of n1 and n2 are different then
∆PTK(n1, n2) = 0; else ∆PTK(n1, n2) =

µ
(
λ2 +

∑
~I1,~I2,l(~I1)=l(~I2)

λd(~I1)+d(~I2)

l(~I1)∏
j=1

∆PTK(cn1(~I1j), cn2(~I2j))
)

where d(~I1) = ~I1l(~I1)−~I11 and d(~I2) = ~I2l(~I2)−~I21. This way,
PTK penalizes both larger trees and child subsequences with
gaps. PTK is more general than STK, e.g., the shared sub-
sequences containing all children of nodes implement STK.
The computational complexity of PTK is O(pρ2|NT1 ||NT2 |)
[20], where p is the largest subsequence of children that we
want consider and ρ is the maximal outdegree observed in
the two trees. However, the average running time again
tends to be linear for natural language syntactic trees [20].

PTK can generate any subset of connected nodes of a
tree T , whose edges are in T . For example, Fig. 3 shows
the fragments of the tree in Fig. 1. Note that each fragment

4To have a similarity score between 0 and 1, a normalization

in the kernel space, i.e. TK(T1,T2)√
TK(T1,T1)×TK(T2,T2)

is applied.
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captures dependencies between different groups of word cat-
egories and words. This can generalize the language model
over words using POS-tags.

4. ANSWER PASSAGE RANKING WITH
STRUCTURAL RELATIONSHIPS

The architecture of our system is rather simple as dis-
played in Figure 4: given a question Q, a search engine re-
trieves a list of passages ranked by their relevancy. The an-
swer passage retrieval component is fully unsupervised and
relies on some scoring model to retrieve most relevant an-
swer passages for a given question. Next, the question to-
gether with its candidate answers are processed by a shallow
parser that produces a set of annotations, e.g., POS-tags and
chunks, for each sentence. These annotations are then used
to convert question/answer pairs into various tree structures
presented in Sec. 4.2. The obtained pairs are then fed as an
input to the kernel based reranker described in the next sec-
tion. The system outputs a reordered list of answer passages
that is supposed to improve the original ranking obtained
from the search engine.

4.1 Preference Ranking
Our re-ranking model is an SVM trained to select the

best candidate from a given candidate set. To use kernels
we apply preference learning [25]. In the preference kernel
approach [30], the re-ranking problem – learning to pick the
correct candidate h1 from a candidate set {h1, . . . , hk} – is
reduced to a binary classification problem by creating pairs:
positive training instances 〈h1, h2〉, . . . , 〈h1, hk〉 and negative
instances 〈h2, h1〉, . . ., 〈hk, h1〉. This training set can then be
used to train a binary classifier. At classification time, pairs
are not formed (since the correct candidate is not known);
instead, the standard one-versus-all binarization method is
applied. Within this kernel-based learning framework of-
fered by SVMs, we can use kernel functions that provide
effective means to model the differences between the ob-
jects representing question/answer pairs. If we have a valid
kernel K(·, ·) = 〈φ(·), φ(·)〉 over the candidate space T , we
can construct a preference kernel PK over the space of pairs
T × T as follows: PK(x, y) = PK((x1, x2), (y1, y2)) =

= 〈φ(x1)− φ(x2), φ(y1)− φ(y2)〉 =

= K(x1, y1) +K(x2, y2)−K(x1, y2)−K(x2, y1),
(2)

where x, y ∈ T × T . It is easy to show [30] that PK is also
a valid Mercer kernel. This makes it possible to use kernel
methods to train the reranker. We explore innovative kernels
K to be used in Eq. 2: K(xi, yj) = r(xi)×r(yj)+DK(xi, yj),
where r(·) is the inverse of the position to which an answer is
ranked by the base model (e.g., a search engine) and DK is
the summation of a structural kernel, i.e., SK, STK or PTK,

Passages 

Figure 5: Preference Reranking

applied to both question and answer, respectively. More
formally, given xi = (axi , qxi) and yj = (ayj , qyj ) the repre-
sentations of two question and answer pairs, DK(xi, yj) =
S(axi , ayj ) + S(qxi , qyj ), where S is SK, STK or PTK.

The structural kernels applied individually to a given ques-
tion and a candidate answer passage would generate many
structural features, yet fail to capture important features
relating the question/answer pair as one object. Hence, it
is important for the learning algorithm that exploits the ex-
pressive power of structural kernels to have a representation
where it can also learn the important features relating a
question and an answer as a single pair. In the next sec-
tions we discuss a simple strategy to establish such a link
between a question and an answer using computationally
efficient and robust methods.

4.2 Shallow Syntactic/Semantic Models for Re-
lation Learning

The goal of this paper is to learn rerankers that are accu-
rate, robust to noise and scale well with the size of the data
available for training. To fulfill these requirements this sec-
tion introduces several efficient and robust representations
for a question and answer pairs.

4.2.1 Shallow Parsing and Semantic Tagging
We derive our representations with a shallow syntactic

parser by only considering part-of-speech (POS) tagging and
chunking. The former associates words with their grammat-
ical categories (e.g., movie → noun → NN, is → verb →
VBZ) whereas a chunker groups the words in a sentence
into syntactic constituents without specifying their internal
structure and their syntactic role (e.g., can be considered →
verbal phrase → VP).

Our representations exhibit the following important char-
acteristics: (i) the pre-processing stage for extracting fea-
tures from questions and answers is efficient; (ii) manual
feature engineering is avoided by using expressive structural
kernels; and (iii) our approach is easily adaptable to di-
verse QA collections, domains and languages as it only relies
on shallow syntactic parsers. For example, state-of-the-art
POS-taggers and chunkers are also available in special do-
mains, e.g., biomedicine and many languages other than en-
glish.

Additionally, we explore the use of semantic information
extracted by named entity recognizers (NERs) or by Word-
net super sense (WNSS) taggers. NER can detect sequences
of words constituting predefined categories such as names,
organizations, locations, etc. (e.g., Paul McCartney → per-
son, U.S. → location). WNSS assigns words to one of 41
broad semantic categories derived from Wordnet super sense
classes5. Typically, NERs implement Conditional Random
Field sequence models, while WNSS taggers are Näıve Bayes
or Maximum Entropy classifiers. Hence, both NERs and

5http://wordnet.princeton.edu/man/lexnames.5WN.html
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WNSS taggers are more computationally demanding pre-
processing tasks. Below, we describe a variety of models
for representing question-answer pairs that rely only on the
shallow syntactic and semantic analysis described above.

4.2.2 Shallow representations of questions and an-
swer passages

As the first preprocessing step, each question and its an-
swer passage are split into sentences and tokenized. Next, we
run a shallow parser, which annotates each token in the sen-
tence with four types of tags: POS, chunks, NER and WNSS
tags. As a shallow parser we used SST-light [7] tagger6,
which carries out tokenization, POS-tagging, NER, WNSS
tagging and lemmatization, which is useful to increase the
matching probability between the words in the question and
the answer.

An example of annotation graph obtained for the question
of our running example Q1 is provided in Fig. 6. Each word
is tagged with its POS tags. Words in the phrase movie

theater popcorn vegan are organized into a single chunk
NP. Also the parser finds an NE, theater, which is anno-
tated with the tag CORPORATION. Typically, NER tags are
fairly scarce, while WNSS has better coverage of words in
a sentence on average, but many of its semantic categories
are rather general. A similar graph can be obtained for each
sentence in the answer. It conveniently allows for exper-
imenting with different representations of question-answer
pairs.

When structural kernels are applied to the shallow tree
in Fig. 6 (we consider a tree root connecting the top POS-
tag nodes or the top chunk nodes), they can generate rich
features, i.e., n-grams combining tags and words, from the
question or from the answer passages. However, to allow
kernels capture relations between a question and its answer
passage, we need to establish relational links between them.
For this purpose, we adopt the following simple strategy:
we mark the parent node (POS-tags) of matching leaf nodes
(i.e., lemmas) with a special placeholders REL in both ques-
tion and all the sentences of its corresponding answer pas-
sage. This way, we are able to derive a joint representation of
the question and the answer, where the REL nodes represent
the most essential parts of the pair.

An example of this procedure between the question Q1
and the first sentence of its answer is shown on the Fig. 8.
The REL nodes provide the means for the structural kernels,
especially STK and PTK, to generate highly discriminative
features that carry an extra cue about the structural rela-
tions between the question and the answer. For example,
PTK can extract the question pattern, is noun+-REL adj-

6http://sourceforge.net/projects/supersensetag/

any movie theater popcorn that include butter and therefore dairy is not vegan

DT REL-
NN
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NN
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REL-
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products
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SQ
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Figure 8: Question and answer sequences aligned by

lexical matching on word lemmas. Matched nodes are

marked with a special REL marker.

REL together with the answer pattern7 any noun+-REL is

not adj-REL. These two patterns, when found together in
a new question/answer pair, may indicate that the answer
is relevant to the question, e.g., any BMW series is not

cheap may be an answer for Is BMW series one cheap?.
Additionally, meaningful pairs of grounded adjectives (re-
lated but not identical), i.e., (adj1, adj2), can be gener-
ally learned since the substructure POS-tag node and its
child (i.e., the word) is part of the PTK space (although
they are sparser patterns). For example, any BMW series

is not cheap can be used to answer the question Is BMW

series one expensive? if patters like any noun+-REL is

not cheap and is noun+-REL expensive co-occur in an-
swer/question pairs of training data.

4.2.3 Structure Pruning
Providing an efficient representation for the answer pas-

sages that contain multiple sentences is not a trivial task.
We deal with this problem by simply putting trees represent-
ing individual sentences of the passage under a single com-
mon root. Since answer passages typically consist of more
than two sentences each 10 to 20+ words long the resulting
shallow tree may be very large. This makes structural ker-
nels that consider all possible substructures inefficient for
such large trees. To alleviate such problem, we propose a
simple yet efficient pruning strategy, which reduces the size
of the tree down to a manageable size, thus gaining substan-
tial computational savings while preserving the accuracy.

A straightforward approach is to prune away all the nodes
that are not marked by the REL tag, as they presumably play
insignificant role in relating question and its answer passage.
However, intuitively, the nodes that surround the relational
nodes may carry important contextual information, which
can help the learning algorithm to generalize better. Hence,
we also keep the nodes that are within a specified distance
from the relational nodes (i.e., the ray of pruning is an ad-
ditional parameter of our models). An example of pruning
with ray equal to 1 between example question Q1 and the
first sentence of the answer is shown in Fig. 9. The result
is a shorter version of the original sentence while preserving
the most essential parts (nodes marked with REL tag) that
encode relational information between the answer and the
question. Additionally, the nodes that surround the REL tag
within the specified distance can serve as a source of addi-
tional contextual features. Since questions are typically one
sentence long and contain fewer words than answers, we only
apply pruning on answer passages.

7+ is the operator of a regular expression meaning at least
one occurrence.
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any movie theater popcorn that include butter and therefore dairy is not vegan
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4.2.4 Chunked Representation
Next, we consider the model using chunker tags (CH).

Chunks introduce additional level into the shallow tree hi-
erarchy by organizing syntactically related words into con-
stituents. We propagate the REL tag from the relational
POS-tags up to their parent chunk nodes. Here we prune
the tree on the chunk level, i.e., we keep only the chunk nodes
and its subtrees that are within the specified distance from
the chunks marked with REL. This results in fewer nodes be-
ing pruned compared to POS-tags based pruning, but at the
same time, it preserves all contextual words that appear in
the same chunk as the matched words. Another very im-
portant advantage is that the tree kernel can generate more
effective features to characterize the role of relational con-
stituents. For example, Fig. 10(a) reports the shallow tree
for the answer sentence reorganized into chunks. The noun
phrase any movie theater popcorn generalizes the patterns
exemplified above thus allowing longer dependency patterns,
e.g., NP is not adj. Fig. 7 demonstrates the entire answer
passage organized in a shallow tree after pruning with radius
1. Thanks to the effective pruning, which allows for preserv-
ing important properties and at the same time reducing the
size of the inter-sentence structure, our kernels can extract
important long distance dependency patterns such as: NP

not adj however alone can be considered adj, which en-
code shallow discourse relations.

4.2.5 Semantic Tags
We also consider shallow structures enhanced with addi-

tional semantics from NER, and WNSS tags (Fig. 10(b)). If
any of the words in a chunk have a NER tag, we propagate
it up to the parent chunk tag. If there are multiple words
having NER tags inside the same chunk we use the last one.
Since NER tags are fairly scarce, we also consider the model
where NER tags are augmented with additional WNSS tags
(see Fig. 10(b)). For example, when the super sense is
used (and considering the adjective grounded in vegan), the
following pattern is also automatically generated food not

vegan however alone can be considered vegan.

any movie theater popcorn that is not vegan
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Figure 10: (a) Pruned answer trees with constituents

re-organized in chunks. REL marker is propagated up

from POS to chunk nodes. (b) Enhanced representation

with additional semantics from NER and WNSS.

4.3 Efficient training of the relational ranking
model

As discussed in Section 4.1, the task of learning a kernel-
based re-ranker using supervised classifiers such as SVMs
can be reduced to a problem of binary classification. While
this approach allows for the application of a wide range of
binary classifiers it may require to carry out learning on
very large datasets, since for each question in the training
set we need to form all combinations of question answer
pairs between the correct and candidate answer passages.
Even when the number of candidate answers per question
is relatively small, for example 10, the number of training
examples generated for the binary classifier increases by an
order of magnitude.

Hence, to learn a re-ranker on medium sized datasets
(from thousands to tens of thousands of questions) would
require to train binary classifiers on datasets of hundreds
of thousands to millions of examples. While this poses little
limitation for the SVMs with linear kernels for which efficient
O(n) learning algorithms have been recently introduced, us-
ing SVMs with non-linear kernels, structural kernels in par-
ticular, can represent a major computational challenge.

Kernelized SVMs scale quadratically with the number of
training examples which prohibits their application on large
data. This is why previous research that focused on appli-
cation of non-linear kernels to question-answer re-ranking
tasks has reported experiments on very small datasets (sev-
eral thousands of examples).

The major bottleneck for the application of SVMs with
structural kernels stems from the necessity to carry out learn-
ing in the dual space. Training can be seen is an itera-
tive process that requires to compute an inner product be-



tween the current model represented by the weight vector
~w and a training example ~oi. It can be shown (see, for ex-
ample, [27]) that this involves quadratic number of kernel
evaluations (Eq. 2) at each iteration, which makes the over-
all scaling behavior of the learning algorithm O(n2). In this
paper, we adopt a Cutting Plane Algorithm with sampling
originally introduced in [41]. The algorithm uses sampling
to effectively reduce the number of kernel evaluations while
preserving theoretical bounds on accuracy and convergence.
We follow the method in [27] developed for SVM learning
with structural kernels, which has been shown to provide
substantial speedups in training over conventional training
methods for non-linear kernels. The Cutting Plane Algo-
rithm also allows for easy parallelization, which makes it
possible to experiment with larger data.

5. EXPERIMENTS
To test the efficacy of our re-ranking approach based on re-

lational features, we conduct experiments on two diverse QA
collections: Answerbag and Jeopardy!. For the Answerbag
dataset, we built the entire answer passage re-ranking sys-
tem as outlined in Fig. 4. Unlike the Answerbag collection,
the Jeopardy! dataset already comes with ranked answer
passages for each questions.

5.1 Setup
To train our re-rankers we used uSVM-TK software, which

implements highly efficient Cutting Plane Algorithm with
sampling [27] within the framework of SVM-Light-TK [20,
16]. This enables the use of structural kernels, e.g., SK,
STK and PTK (see Sec. 3.2). We extended the software to
handle re-ranking on pairs of multiple trees corresponding to
question-answer pairs. We used default parameters to favor
replicability of our results.

We ran all the experiments on a machine equipped with
12 CPUs Intel R© Xeon R© 2.93GHz CPUs carrying 98Gb of
RAM under Linux. The uSVM-TK software allows for train-
ing and testing in parallel mode; the reported runtimes refer
to the use of four CPUs.

To measure the accuracy of our re-ranker system, we used
two metrics: Recall of 1 at rank=1 (R1@1) i.e., the percent-
age of questions with at least a correct answer ranked at
the top position of the candidate list, and Mean Reciprocal

Rank (MRR) computed as follows: MRR = 1
|Q|
∑|Q|

i=1
1

ranki
,

where ranki is the position of the correct answer in the can-
didate list.

5.2 Corpora
Answerbag. The first corpus we experimented with rep-
resents a large sample of Answerbag QA collection8. This
community-driven Web QA collection is very active and is
similar to other popular QA sites such as Yahoo! Answers9

and WikiAnswers10. One of the reasons that makes this
site attractive for its users is that it contains a very large
portion of questions tagged as “professionally researched”.
For this type of questions, website moderators provide suc-
cinct and exhaustive answers, which makes it ideal for build-
ing a high quality question answering corpus. We scraped
180,000 question-answer pairs from 20 different categories.

8http://www.answerbag.com
9http://answers.yahoo.com

10http://wiki.answers.com

As an answer retrieval component for this collection, we use
an off-the-shelf search engine: Terrier11 using BM25 scoring
function with other settings set to default. We retain top 15
candidates for each question. We omit questions for which
the search engine failed to retrieve a correct answer in the
top 15 positions, since these cases carry no value for train-
ing or evaluation of our re-ranker models. This leaves us
with roughly 60% of the questions from the original data for
which the correct answer is found in the top 15 positions.
From this set of questions we form training sets of increasing
size starting from 25k and up to 750k pairs. For testing, we
use 30k re-ranking examples which corresponds to roughly
2k questions.
Jeopardy! The second dataset represents a small subset
of the output from the Primary Search retrieval component
of IBM Watson QA system12 built specifically to provide
answers for questions from the Jeopardy! challenge13. Dif-
ferent from the setting for the Answerbag collection, where
we had to use our own passage retrieval system, here each
question is provided together with the set of answer passages
ranked by Watson. This allows us to compare our re-ranker
to a very strong baseline (IBM Watson is a state-of-the-art
QA system). The collection is composed of 517 questions
where each question comes with 50 candidate passages. Un-
like the Answerbag dataset, most of the questions in this
collection have more than one relevant answer passage. On
average there are 6 relevant out 50 candidate passages for
each question. We use 70% (259 questions) for training and
30% (116 questions) for testing. Since each question has
multiple correct answer passages, to create a training set,
we paired up each correct answer with all incorrect candi-
dates. As a result we obtain 63,361 examples for training
and 5,706 testing.

5.3 Accuracy on Answerbag
Table 1 summarizes the results for various models de-

scribed in the Section 4.2 trained on the set of 25,000 ex-
amples (1,676 questions). W stands for bag-of-words, POS
- bag-of-POS-tags, REL - bag-of-REL nodes, CH indicates
models with sentence constituents organized in chunks, PR-
1 indicates pruning with ray 1. NER corresponds to tags
obtained from named-entity recognizer and WNSS are tags
from homonymous tagger.
Bags of features. As expected models that are based on
just bags of features (W, POS, W+POS) perform poorly
showing negative or no improvement over the baseline. In-
terestingly, we notice that introducing a relational REL tag
to mark the matched nodes in the question and its answer
(models: POS+REL, W+POS+REL) provides a small in-
crease in accuracy compared to the models that do not ex-
ploit such relational information. Even for completely un-
structured features, relational nodes can serve as a useful cue
to discriminate between the correct and incorrect question-
answer pairs. Surprisingly, the model combining all of the
features including additional features from NER and WSSN
taggers (W + POS + NER + WSNN + REL) results in
severe over-fitting. After performing manual inspection, we
concluded that, since the search engine (SE) already sets a
very strong baseline for this QA collection (MRR: 71.63%
and REC1@1: 59.14%), using features similar to those of

11http://terrier.org/
12http://www-03.ibm.com/innovation/us/watson/index.html
13http://www.j-archive.com.



Table 1: Experiments with different models.

Model MRR R1@1
baseline (BM25) 71.63 59.14

Bags of features
w 68.23 54.83
pos 69.61 56.38
w+pos 69.79 56.78
w+rel 69.21 55.63
pos+rel 71.25 58.85
w+pos+rel 71.88 59.02
w+pos+ner+wnss+rel 65.66 52.01

Sequences of features
pos (SK) 67.40 52.24
pos+rel (SK 1) 71.25 58.85
pos+rel (SK 2) 72.54 60.86
pos+rel (SK 3) 72.99 61.08
pos+rel (SK 4) 72.74 61.26
pos+rel (SK 5) 72.91 61.32

Structural features
pos+rel (STK) 71.99 59.08
pos+rel (PTK) 73.50 61.32
ch+rel (PTK) 75.14 63.68
ch+rel (STK) 73.09 63.52
translation 71.55 59.01

the SE for re-ranking cannot provide improvement. Addi-
tionally, NER and WSNN taggers that assign words to very
general categories are not helpful for discriminating between
the similar answer passages retrieved by the SE.

In summary, the top part of the Table 1 provides a clear
indication that using unstructured features gives little to
no benefit for the re-ranker. To confirm this behavior does
not change on larger data, we also carried out training on
larger samples of the training set but observed essentially
flat learning curves, which means that the models relying
only on the bags of features do not improve with more data.
Linear sequence models. In contrast, using SK applied
to POS tags generates all possible skip n-grams. Coupled
with the relational information captured by the REL marker
(POS+REL) it provides interesting improvement over the
baseline. At the same time, when applied on the sequence of
POS-tags without relational information (POS), we observe
no improvement. We also show the results using different
values for the maximum subsequence length in SK: (SK 1),
(SK 2), (SK 3), (SK 4), and (SK 5). For example, (SK 3)
will consider all skip n-grams up to the length 3. The results
show that complex features up to 5 elements provide the
highest accuracy. This suggests that the modeled structures
provide an adequate generalization level for SK to extract
effective 5-grams (constituted by POS-tags and words).
Structural features. Next, we consider the application
of structural kernels, e.g. STK and PTK, to shallow trees
(POS+REL). We first note, that STK does not work well on
shallow representations, due to its limited expressive power
as discussed in Section 3.2.1. Conversely, PTK that gener-
ates all possible tree fragments is able to pick up the relevant
features showing significant improvement over the baseline.
To make STK more efficient and effective, we consider chun-
ked representation, which allows STK to generate richer fea-
ture sets. Indeed, STK on CH+REL gets a higher accuracy.
Translation-based features. To compare with previous
work, e.g., [15, 35], we experimented with question-to-answer
translation models that have been reported to provide one of
the most important features for re-ranking question-answer

Table 2: Chunk models with different levels of pruning

(“-” is no pruning, time is in minutes).

Model ray train test MRR R1@1
SK

pos+rel 0 3 2 72.9 61.3
pos+rel 1 6 6 72.7 61.0
pos+rel - 5 3 72.9 61.3

PTK
pos+rel 0 19 8 74.1 62.1
pos+rel 1 40 16 74.7 63.4
pos+rel - 50 20 74.7 63.4
ch+rel 0 27 16 75.0 63.6
ch+rel+ner 0 13 7 73.6 61.5
ch+rel 1 39 23 74.2 62.1
ch+rel+ner 1 21 13 75.0 64.0
ch+rel+ner+wnss 1 18 11 73.4 61.3
ch+rel 2 53 46 74.3 62.3
ch+rel - 90 61 75.1 63.7

STK
ch+rel 0 4 4 73.4 60.9
ch+rel+ner 0 3 13 71.9 59.0
ch+rel 1 7 6 73.7 61.1
ch+rel+ner 1 5 5 73.5 61.9
ch+rel+ner+wnss 1 5 6 72.5 59.8
ch+rel 2 10 12 73.8 61.8
ch+rel - 13 13 73.1 60.5

pairs. Translation-based models exploit word translation
probabilities to compute a similarity score between a ques-
tion Q and an answer A: sim(Q,A) =

∏
q∈Q P (q|A). The

word translation probabilities can be learnt using word align-
ment toolkits such as Giza++14 or Berkeley Aligner15. To
build word translation probabilities we used Berkeley Aligner
without any parameter tuning except for increasing the de-
fault number of iterations from 2 to 10. To train the word
alignment model we used 70% of the data reserved for the
training and then used the obtained alignment model to
compute the similarity score between a question and the
answer for both training and test re-ranking datasets. We
added translation features to all the models mentioned in
this section and observed little to no improvement indepen-
dent of the dataset size used for training a reranker. This
suggests that only structural features extracted by STK and
PTK from POS+REL and CH+REL structures exhibit high
discriminative power.

5.4 Efficiency analysis - large scale learning
As discussed in Sec. 4.2 pruning is an effective way to

reduce the size of a tree by removing less pertinent nodes.
This is essential to speed up kernel evaluations, which would
allow for better scaling to larger data. The study of runtime
savings for different levels of pruning is presented in Table 2.

We first observe that applying pruning with rays ∈ {0, 1}
on POS+REL trees for both SK and PTK results in runtime
speedups up to 2x. A similar picture is observed for the
CH+REL tree representations. Interestingly, models with
the most aggressive pruning using ray=0, such that no con-
text nodes are preserved, demonstrate slightly higher accu-
racy than other models with softer levels of pruning. This
can be explained by the fact that keeping additional con-
text nodes around the relational nodes produces richer fea-

14http://code.google.com/p/giza-pp/
15http://code.google.com/p/berkeleyaligner/
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ture spaces (especially with PTK), which may result noisy
on relatively small datasets. Hence we studied the learn-
ing curves for these models on 50k and 100k training sets
and found that CH+REL with pruning at ray=1 provided
the steepest learning curve, while maintaining the optimal
tradeoff between the training time and accuracy. We also
prefer a simpler CH+REL model, which only requires to
perform POS-tagging and chunking, over more refined mod-
els with NER and WNSS tags, which require additional pre-
processing. Thus, we build learning curves for the CH+REL
models using STK and PTK reporting MRR (Fig. 11) and
REC1@1 (Fig. 12). The plots demonstrate nice scaling be-
havior when training CH+REL re-ranker model on larger
data. For example, the PTK-based rerankers improve BM25
by about 6 absolute points in MRR, i.e., 71.6 vs. 77.8, and
about 7 points in R1@1, i.e., 59.1 vs. 66.5, for a relative
error reduction of about 18-20% in R1@1.

5.5 Jeopardy! experiments
Since the size of Jeopardy! dataset does not allow for

building a meaningful learning curve we report the plot of
R1@x, which measures the percentage of questions with at
least one correct answer in the first x positions. We exper-
imented with PTK applied to CH+REL structures also en-
coding NER and WNSS. Figure 13 shows that for any rank
position, the simplest model outperforms semantic mod-
els. Most importantly, the Primary Search of Watson is
improved up to 5 points for an error reduction of 20%.

6. CONCLUSIONS AND FINAL REMARKS
The key aspect in learning to rank answer passages for

QA systems is the use of relationships between the ques-
tion and the supporting passages of its answer candidates.
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Supervised methods can generalize the properties found in
different question/answer pairs and use them to evaluate
the validity of new candidates. In this perspective, the most
difficult aspect is the design of relational features that can
enable the learning algorithm to learn the properties above.
In this paper, we propose robust and simple models to learn
such properties from large datasets. On one hand, we use
shallow syntactic and semantic (at lexical level) represen-
tations, which can be efficiently and automatically derived
with high accuracy. On the other hand, we exploit the power
of structural kernels for automatic engineering of a huge
number of structural features. Applied to large training sets
(hundreds of thousands) our models allow for efficient learn-
ing of complex question/answer relationships.

Our experiments with Support Vector Machines (SVMs)
and various shallow models on two datasets: Answerbag and
Jeopardy! show that: (i) bag-of-features of question and
answer passages, ranging from words to POS-tags or trans-
lation probabilities are not effective; (ii) relational features,
i.e., encoding pair properties, become effective only when
used in structures, e.g, using SK; and (iii) the best compro-
mise between efficiency and accuracy is given by the pure
shallow syntactic tree structures as NER or WNSS may in-
troduce noise. Additionally, large scale experiments show
significant improvement - about 18-20% of reduction in Re-
call error, on two strong baselines for passage re-ranking,
i.e., BM25 and IBM Watson primary search.

It should be noted that the above baselines are just the
first module of QA systems. The latter at the end of their
pipeline can produce better rank of passages (also exploit-
ing the answer candidates). However, our rankers use or-
thogonal information with respect to QA systems, i.e., (i)
similarity between relational pairs of questions and answer
passages rather than between questions and their answer
passages and (ii) complex patterns learned using supervised
methods on large data. This kind of information will most
likely improve any QA system: verifying this claim is one of
our short-term future research directions.
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