
Automatic Generation and Reranking of
SQL-Derived Answers to NL Questions

Alessandra Giordani and Alessandro Moschitti 1

Abstract. In this paper, given a relational database, we automati-
cally translate a factoid question in natural language to an SQL query
retrieving the correct answer. We exploit the structure of the DB to
generate a set of candidate SQL queries, which we rerank with a
SVM-ranker based on tree kernels. In particular we use linguistic de-
pendencies in the natural language question and the DB metadata to
build a set of plausible SELECT, WHERE and FROM clauses en-
riched with meaningful joins. Then, we combine all the clauses to
get the set of all possible SQL queries, producing candidate queries
to answer the question. This approach can be recursively applied
to deal with complex questions, requiring nested SELECT instruc-
tions. We sort the candidates in terms of scores of correctness using
a weighting scheme applied to the query generation rules. Then, we
use a SVM ranker trained with structural kernels to reorder the list
of question and query pairs, where both members are represented as
syntactic trees. The f-measure of our model on standard benchmarks
is in line with the best models (85% on the first question), which use
external and expensive hand-crafted resources such as the semantic
interpretation. Moreover, we can provide a set of candidate answers
with a Recall of the answer of about 92% and 96% on the first 2 and
5 candidates, respectively.

1 Introduction
In the last decade, a variety of approaches have been developed
to automatically convert natural language questions into machine-
readable instructions. In the area of databases, question answering
(QA) systems are supposed to answer to natural language questions
by executing one or more SQL queries. This is obviously a complex
task as systems have to deal with the lexical gap between natural
language expressions and database structure. In this paper, we will
demonstrate that it is possible to fill such gap by relying on (i) the
informative metadata embedded in all real databases, (ii) natural lan-
guage processing methods, e.g., syntactic parsing, and (iii) advanced
machine learning to build kernel-based rerankers.

When designing a database, domain experts are requested to orga-
nize entities and relationships naming tables and columns in a mean-
ingful way (i.e. state name or capital instead of table 1 or table 2).
Moreover the database schema also specifies constraints and data
types. This metadata is stored in an underlying database that contains
tables of each database. The latter, in turn, contain columns referring
to table names and column names. Such logic organization is referred
to as catalog, and in SQL systems it is stored in a database called IN-
FORMATION SCHEMA (IS for brevity). A fragment sample is shown
in Figure 1. IS can be inspected as a normal database, posing SQL

1 Department of Computer Science and Engineering, University of Trento,
Italy, email: agiordani@disi.unitn.it

queries to obtain useful fields to build a new SQL query. In practice,
we can use the same technique and technology to generate an answer
to a given question and retrieve the answer.

This approach can also deal with cross-domain questions, as long
as IS embeds shared metadata between multiple databases. For ex-
ample, if we have both GEOQUERY and SAKILA data in the same
database systems, we can find an answer for cross-domain questions
like “Which movies were recorded in major cities of Texas?”.

In addition instead of using tailored dictionaries, we can enrich
our knowledge based on the metadata added by the domain expert,
when designing the database. Of course, it will be essential to rely
on WordNet and similarity measure to generalize such metadata. For
example, an answer for the question “Which rivers run through New
York” can be found in the GeoQuery corpus. This is associated with a
spatial database whose structure is stored in IS as shown in Figure 1.

While we have a simple matching for the word rivers with table
river and column river name, there isn’t a direct mapping between
the word run in the question and any of the columns in the meta-
data. However, the disambiguation of the term run can be easily per-
formed by looking at the less semantically distant metadata entry,
i.e., traverse. This matching is re-confirmed when investigating on all
possible interpretations of New York in this database (i.e. city name,
state name, etc.), by the existing reference between column traverse
in table river and column state name in table state.

However, a link between both words New and York is not so easy,
since there is no evidence of relatedness between the two words in
the metadata: this means that the whole database should be looked up
for their stems. Words can be matched with lots of values (e.g., ”New
York” both as city and as state name, but also with ”New Jersey”), as
shown by Figure 2. We can generate all possible (even ambiguous)
queries exploiting related metadata information (i.e. primary and for-
eign keys, constraints, datatypes, etc.) and select the most plausible
one using a re-ranker.

Last but no least, we deal with complex natural language (NL)
questions, containing subordinates, conjunctions and negations and
nested SQL queries. In particular, we designed a mapping algorithm
that matches dependencies between NL components and SQL struc-
ture that allows to build a set of possible queries that answers a given
question. This question answering problem and our proposed solu-
tion are described in detail later on in the paper. Section 2 gives a
formal description of the problem while Section 3 describes the ba-
sic steps of our algorithm used to build clause. Section 4 shows how
we prune and weigh queries in their possible combinations to gen-
erate an ordered set of meaningful queries among which we find the
answer. Section 5 describes tree kernels our kernel-based rerankers.
Section 6 discusses the results obtained using a reranking algorithm,
while Section 7 draws some conclusions.

Figure 1. A DBMS catalog containing GEOQUERY and SAKILA

Figure 2. GEOQUERY database fragment

2 The Problem

We will begin by introducing the notion of typed dependencies and
how to obtain a collapsed list of dependencies starting from an NL
sentence. Then we will introduce the subset of Structured Query Lan-
guage that our system can deal with and, in order to formalize the
problem, we will recall the notation of corresponding operations in
relational algebra.

2.1 NL Questions and Dependencies List

To represent the textual relationships of the NL sentence we use
typed dependency relations. The Stanford Dependencies represen-
tation [9] provides a simple and consistent description of the binary
grammar relations existing between a governor and a dependent. As
shown in the example below, each dependency is written as abbre-
viated relation name (governor, dependent). The governor and the
dependent are words in the sentence associated with a number indi-
cating the position of the word in the sentence.

In particular we refer to collapsed representation, where depen-
dencies involving prepositions, conjuncts, as well as information
about the referent of relative clauses are collapsed to get direct de-
pendencies between content words.

For example, the Stanford Dependencies Collapsed (SDC) rep-
resentation for the question, q1: “What are the capitals of the states
that border the most populated state?” is the following:

SDCq1 = attr(are-2, what-1), root(ROOT-0, are-2),
det(capitals-4, the-3), nsubj(are-2, capitals-4),
nsubj(border-9, states-7), rcmod(states-7, border-9),
det(states-13, the-10), advmod(populated-12, most-11),
amod(state-13, populated-12), dobj(borders-9, state-13)

The current representation contains approximately 53 grammatical
relations but for our purposes we only use the following: adverbial
and adjectival modifier, agent, complement, object, subject, relative
clause modifier, prepositional modifier, and root.

2.2 SQL queries and Relational Algebra

The general SQL query with which our system can deal has the fol-
lowing form:

SELECT COLUMN FROM TABLE [WHERE CONDITION]
(1)

The query is interpreted starting from the relation in the FROM
clause, selecting tuples that satisfy the condition indicated in the
WHERE clause (optional) and then projecting the attribute in the
SELECT clause.

In relational algebra, selection and projection are performed by σ
and π operators respectively. The meaning of the SQL query above
is the same as that of the relational expression:

πCOLUMN (σCONDITION (TABLE)) (2)

It is worth noting that while relational algebra formally applies to
sets of tuples (i.e. relations), in a DBMS relations are bags so it may
contain duplicate tuples [4]. For our purposes the fact of having du-
plicates in the result adds nois; this is why we always delete multiple
copies of a tuple by using the keyword DISTINCT in the COLUMN
field. In our QA task we expect that questions can be answered with
a single result set (e.g. we can deal with “Cities in Texas” and “Pop-
ulations in Texas” but not with the combined query “Cities and their
population in Texas”). That is, even if in general COLUMN could

be a - possibly empty - list of attributes, in our system it just con-
tains one attribute. We can apply to this attribute aggregation oper-
ators that summarize it by means of SUM, AVG, MIN, MAX and
COUNT, always combined with DISTINCT keyword (e.g. SELECT
COUNT(DISTINCT state.state name)).

Instead, CONDITION is a logical expression where basic con-
ditions, in the form eL OP eR, with OP={<,>,LIKE,IN}, are com-
bined with AND, OR, NOT operators. While eL is always in the form
table.column, eR could be:

• numerical value (e.g. city.population > 15000) or
• string value (e.g. city.state name LIKE "Texas") or
• nested query (e.g. city.city name IN (SELECT state.
capital FROM state)

An example of a complex WHERE condition could be the follow-
ing: city.population > 15000 AND city.city name
NOT IN (SELECT state.capital FROM state))
AND NOT city.state name LIKE "Texas" (i.e. “major
non-capital cities excluding texas”).

The meaning of TABLE is more straightforward, since it should
contain table name(s) to which the other two clauses refer. This
clause could just be a single relation or a join operation, which se-
lectively pairs tuples of two relations. We only deal with theta-joins
where we take the Cartesian product of two relations and exclusively
select those tuples that satisfy a condition C. The notation for theta-
joins of relations R and S based on condition C is R./S

C . We use
the SQL keyword ON to keep this condition C separated from the
other WHERE conditions since it reflects a database requirement and
shouldn’t match to anything of the NL question. (e.g. city JOIN
state ON city.city name = state.capital).

The complexity of generated queries is fairly high indeed, since we
can deal with questions that require nesting, aggregation and nega-
tion in addition to basic projection, selection and joining (e.g. “How
many states have major non-capital cities excluding Texas”).

2.3 Problem Definition
The question answering task of finding an SQL query that retrieves
an answer for a given NL question reduces to the following problem.

Given a question q represented by means of one typed dependency
collapsed list SDCq , generate the three sets of clauses S,F ,W (ar-
gument of SELECT, FROM and WHERE, respectively) such that:

∃s ∈ S,∃f ∈ F ,∃w ∈ W s.t. πs (σw(f)) answers q (3)

The query answer πs (σw(f)) is chosen among the set of all pos-
sible queries A ={SELECT s× FROM f× WHERE w} in a way
that maximizes the probability of generating a result set answering
question q.

3 Building Clauses Sets
In order to generate all possible queries for a question q we need to
find their possible SELECT, FROM and WHERE clauses (S,F and
W). We start from a dependency list SDCq and (a) prune and stem
its components, (b) add synonyms, (c) create the set of stems used to
build S andW and (d) keep only dependencies possibly used in the
recursive step to generate nested queries. Building the set F from S
andW is straightforward.

We are now going to briefly discuss some examples to introduce
the objective of individual steps and clarify how the entire process is

carried out. The first question we take into account is the simplest
one: “What is the capital of Texas?”. Its answer can be retrieved
executing the query: SELECT capital FROM state WHERE
state.state name=’Texas’. We can see that they share only
two stems, capital and Texas. The key of categorizing stems (Section
3.2) is to recognize that the first stem will be used in S and the second
one inW . In particular, since the word Texas is not a value in the IS,
it is used as a r-value in the WHERE expression, while the l-value is
derived from the column name under where it appears (Section 3.4).

The fact of being respectively projection and selection oriented
can be inferred looking at their grammar relations, i.e. inspecting
the dependency list (e.g. root of the sentence together subject
dependent are typically used for projections). This list needs to be
preprocessed (section 3.1) to take into account only relevant relations
between the stems of the question. Let us consider for example the
question: “What is the capital of the most populous state?” and its
associated answering query SELECT capital FROM state
WHERE population = (SELECT max(population)
FROM state). The matching words are capital and state, while
stemming also allows to find a mapping through popul. We can
note that this stem is used both in the l-value and in the r-value of
the WHERE expression. In fact, this query requires nesting and
indeed the categorizing algorithm needs to be recursive. This stem is
classified both as a selection oriented stem for the outer query, and
as a projection oriented one for the inner query (note that it requires
aggregation, handled when generating the SELECT clause set, see
Section 3.3).

Finally we will introduce one last example to clarify Section
3.5. While with the other examples it is straightforward to com-
pile the FROM clause, since the other clauses refer to the same
table, when we deal with columns belonging to different tables
things get complicated. Take question “What are the capitals states
bordering Texas?”) and its associated query SELECT capital
FROM ... WHERE border = ’Texas’. How can we fill in
the dots in the FROM clause? Fields capital and border belong re-
spectively to tables state and border info. Form the database cat-
alog, we learn that these two tables are connected via the for-
eign key state name and so the final F will include the following
join: state JOIN border info on state.state name
= border info.state name.

3.1 Optimizing the Dependency List
As introduced in Section 2.1, we don’t need all grammatical relations
provided in output by the Stanford Dependency parser. For this rea-
son before preprocessing the list of dependencies we need to prune
the useless ones and remove from governors and dependents the ap-
pended number (indicating the position of the word in question q).
Then, govs and deps are reduced to stems (using the Porter stem-
mer2).

In order to disambiguate the sense of the stems that do not appear
in metadata but could match with it, we create a list of synonyms
using off-the-shelf resources (like Wordnet and similarity measures)
combined with our internal knowledge (represented by database con-
straints). Using this list we can substitute certain stems with their
stemmed synonyms.

The resulting SDCq is optimized to be processed by the next step.
An example showing SDCopt

q1 with respect to the original SDCq1

introduced in Section 2.1 can be found in Table 1.

3.2 Categorizing Stems
Before building S andW sets we need to identify those stems that are
projection and/or selection oriented. Those stems will be added re-
2 http://tartarus.org/martin/PorterStemmer/

(1)root(ROOT, are),
(2)nsubj(are, capital),
(3)prep of(capital, state),
(4)nsubj(border, state),
(5)rcmod(state, border),
(6)advmod(populat, most),
(7)amod(state, populat),
(8)dobj(border, state)

Π = {capital, state}
Σ = {are} ⇒ Σ = φ

Π′ = {state, border}
Σ′ = {border, state}

Π′′ = {most, populat, state}
Σ′′ = φ

Table 1. Categorizing stems into projection and/or selection oriented sets

spectively to Π and/or Σ categories according to the following rules.
For each grammatical relation rel(gov,dep) in SDCopt

q :

1. If it is ROOT, dep is the key to populate W so add it to Σ and
remove the relation from SDCopt

q . This stem can be an auxiliary
verb, e.g., is, are, has, have and so on. It is useless to build the
arguments of the queries but it could be used transitively to add
other stems3.

2. If it starts with nsubj, check if gov ∈ Σ. If not (because there isn’t
any ROOT relation) add gov to Σ. Then add dep to Π and remove
rel from SDCopt

q , otherwise keep it, since it could be a subject
related to a subordinate (we will need it in the recursive steps).

3. If it starts with prep or it ends with obj, we used it to create con-
ditions (possibly involving nesting):

• check if gov ∈ Π. If not (because no ROOT or nsubj relations
were found so far) add gov to Π.

• Then add dep to Σ if there is not any table.column like 4

gov.dep. Otherwise, also add dep to Π and remove rel from
SDCopt

q .

4. If it ends with mod, it implies that dep is a modificator of gov, so
they should be paired together: if gov ∈ Σ add dep to Σ and if gov
∈ Π add dep to Π and remove rel from SDCopt

q . This should be
done only if dep is not a superlative (i.e. doesn’t end with -st). The
non-removed relations will be taken into account in the recursive
step, adding both dep and gov to Π.

5. If none of the above rules can be applied, iterate the algorthm re-
cursively building Π′ and Σ′, Π′′ and Σ′′ and so on, until SDCopt

q

is empty.

In order to show how these steps are used to build projection
and/or selection oriented sets from which we generate S andW , let
us consider the list of optimized dependencies SDCopt

q1 in Table 1.
At the first iteration we use ROOT to add are to Σ, then we also ex-

ploit it to add capital and include state to Π as soon as we check that
there is an occurrence state.capital in IS. At this point these
three relations have been deleted from SDCopt

q1 obtaining SDCopt
q1
′

used in the next iteration. Note that since are is a short stem, it should
be deleted from Σ.
3 Stems of 3 or less characters would introduce too much noise in retrieving

matching strings, so they will be eliminated in an additional step 6. Useful
words like in, of, not, or, and are embedded in relation abbreviations when
collapsing dependencies.

4 We query metadata seeking for something similar to gov as a ta-
ble and to dep as a column, i.e. we search for table names using
πtable name

(
σtable name∼=dep∧column name∼=gov(IS.Columns)

)
.

For brevity we use the symbol s1 ∼= s2 for s2 substring of s1, i.e. s1 LIKE
”%s2%”.

Figure 3. A subset of SELECT clauses for q1

At the second iteration (first recursion step) we don’t have a ROOT
relation so we use nsubj to add add border to Σ′ and state to Π′.
Since with rcmod we find an occurrence border.state name
in IS, border is added also to Π. At this point, seeking through the
end of the list we discard dobj because even if border ∈ Π′ we do
not find state.border in IS, so these other three relations are
deleted from SDCopt

q1
′ obtaining SDCopt

q1
′′ for the last iteration.

In the third iteration we have SDCopt
q1
′′ composed by two mod

relations, so we add all stems to Π′′ and delete their associated rela-
tions from the list.

3.3 Building the SELECT Clauses Set
Once we have identified the set Π of projection-oriented stems, we
can use it to search in metadata all the fields that could match with
them. The generation process for S is described by the following
generative grammar.

S → AGGR ’(’ FIELD ’)’ | FIELD
AGGR→ max | min | sum | count | avg
FIELD→ TAB.COL
TAB ∈

⋃x∈Ππtable name(σtable name∼=x(IS.Tables))
COL ∈

⋃x∈Ππcolumn name(σcolumn name∼=x(IS.Columns))

With each element of S, we also associate a weight wi, calculated
according to the procedure described in Section 4.3 (we will discuss
it later). For example, considering the IS scheme in Figure 1, the
SELECT clauses originated from Π of Table 1 are shown in Fig. 3.
Note that the superscript numbers indicate the weight associated with
each statement.

3.4 Building the WHERE Clauses Set
Before generating WHERE clauses, the selection-oriented set of
stems Σ should be divided into two distinct sets: ΣL and ΣR.

The set ΣL contains stems that find their matching in IS and allow
us to build the set of left-hand side expressions WL → FIELDwi ,
where FIELD is defined above and computed with ΣL in place of Π
(wi is its associated weight).

For the remaining stems ΣR = Σ − ΣL we should
look up in the database to find a match5: ∀col ∈
IS.Columns, ∀tab ∈ IS.Tables we generate the set
WR =

{
x|πcount(∗) (σcol∼=x(Geoquery.tab)) >= 0

}
.

Then, in order to build the WHERE clause set, W , ∀eL ∈
WL,∀eR ∈ WR we first generate basic expressions expr = eL
OP R and combine them by means of conjunctions and negations
(see Section 2.2), keeping only those expressions expr such that the
execution of πcount(∗) (σexpr(table)) does not lead to an error for at
least a table in the database.

To understand how it works, let us introduce a new exam-
ple question q2: “what are the capitals of states bordering
New York?”. The SDCopt

q2 is similar to SDCopt
q1 except for

the last three relations. Row (6) disappears while rows (7) and

5 Non-matching stems may semantically match a whole condition and need
to be handled carefully. For example, major, if associated with city is trans-
lated into ′city.population > 15000′ while when talking about river is
associated withs ′river.length > 750′[2]

Figure 4. Possible pairing between clauses for q2

(8) are replaced by amod(york, new) and dobj(border, york),
leading to Σ′ = {border, new, york}. This set is split into
Σ′L = {border} and Σ′R = {new, york}. We build W ′L ={
border info.border3, border info.state name2

}
and W ′R ={′new york′2,′ new mexico′1,′ new jersey′1,′ newark′1

}
. Fi-

nally we generate the set of possible valid conditions and their
weights:W = {border info.border = ‘new york′

5
,

border info.state name = ‘new york′
4
, ...}.

Anyway, the set ΣR could happen to be empty. For example, when
the WHERE condition requires nesting: in this case eR will be the
whole subquery (e.g. Σ′ in Table 1). It could be the case that also
ΣL is empty. In fact a query without a WHERE clause is valid
(e.g. Σ′′ in Table 1). In any case, even if there are no selection-
based stems, W may not be empty (e.g. Σ in Table 1). Taking
into account all tables and columns we can get more conditions:
W*R = {tab.col such that tab ∈ πtable name (IS.Columns) and
col ∈ πcolumn name (IS.Columns)}.

3.5 Building the FROM Clauses Set
The generation of the FROM clause F is straightforward given S
andW . This set will contain all tables to which clauses in S andW
refer, enriched by pairwise joins.

As stated before, this information can be found running
SQL queries over IS exploiting metadata stored in table
KEY COLUMN USAGE (in short, K; see Figure 2). This table iden-
tifies all columns in the current databases that are restricted by some
unique, primary key, or foreign key constraint. That is, for each us-
age of foreign key column in the table, we can determine how many
aggregate table columns match that column usage.

First, we extract tables appearing in S andW (i.e. words ending
with dot), creating a set F . At the beginningF=F . Then ∀t1, t2 ∈ F
πcol name,ref col name (σtable name=t1∧ref table name=t2(IS.K))

retrieves c1, c2 to perform the: join t1./t2
c1=c2 . In this way F in enriched

whit the two-table join t1 join t2 on t1.c1 = t2.c2. In addition
we can allow for more distant joins by finding an intermediate table
useful to link two tables that are not directly referencing each other.
This can be done performing a complex join between two instances
of KEYS with multiple conditions, but due to for lack of space this
can not be illustrated here.

With respect to our example with question q1 and its SELECT
clauses shown in Figure 3, the set of FROM clauses is:
F ′ = {state, border, state join border onstate.state name =
border info.border, ...}.

Note that there are no weights associated with FROM clauses be-
cause it is not possible to backtrack how many stems made each table
appear in F .

4 Generating Queries
In the previous section we saw how to create building blocks for
queries starting from a question q. These elements should be paired
together in a smart way to generate the set of queries that possibly
answer q. This pairing is obtained by creating the Cartesian product

between clauses sets from which non-valid, redundant and meaning-
less clauses are deleted. We use a weighting scheme to order the most
probable correct candidate queries.

4.1 Clause Cartesian Product
In order to find possible answering queries we generate the set A =
{S×F×W} ∪ {S×F}. Given that at least one such query exists
there should be one pairing 〈s, f, w〉 ∈ A, such that the execution
of SELECT s FROM f [WHERE w] retrieve the correct answer.
Given that each clause set contains on average up to ten items, this
product can result in a very huge set. Thus, when generating all pair-
ings some preliminary conditions are verified, e.g. tables appearing
in SELECT and WHERE clauses should appear in the FROM clause
as well, otherwise the execution of that query will fail. This avoids
generating incorrect queries and wasting time trying to execute them.

To give a simple example, we illustrate in Figure 4 some gener-
ated clauses for the question q2 , together with possible pairings.
The pairing 〈s1, f1, w1〉 is not correct: it leads to the MySQL error
Unknown table: border info.

4.2 Pruning Useless Queries
Once the set A of all valid pairings is built, we additionally prune
some of them which are not useful. For example, meaningless queries
project the same field compared to a value in the selection (e.g. the
pairing 〈s3, f2, w2〉 answers the question “Which state is New York?”
and is clearly useless).

Moreover there could be redundant queries that, if optimized,
allow us to remove duplicates in the set, reducing its cardinal-
ity. For example, the pairing 〈s2, f3, w1〉 requires the columns
state.state name and border info.border to be the same, so w2

would select the same rows of w′2(i.e. state.state name=’new york’),
but this means that table border info is no longer used and this pair-
ing is equivalent to 〈s2, f1, w

′
2〉which, as said above, is meaningless.

4.3 Weighting Scheme
As introduced in the previous sections, we weigh each clause in S
and W by counting how many stems in the original question origi-
nated that clause.

In particular, for the SELECT clause, if there is a table that
matches with a stem, its weight is +2 while the matching with
columns weighs +1 (common stems between table and column are
not valid). Superlatives matching with aggregation operators count
as +1.

For the WHERE clause, a weight is computed in the same way as
for the left-hand side of the conditions and a +1 is added for each
matching value in the right-hand side. In addition when dealing with
nested queries, the WHERE clause inherits also the weight of the
nested query.

The FROM clauses are not associated with weights. However, we
will take into account how many joins are involved when ordering
queries with the same weight.

When pairing clauses the total weight is obtained just summing up
the weight of its components, and it is used to order the final set Ā
of possible useful queries from the most to the least probable.

Figure 4 highlights this probabilistic score (obtained by the
heuristic one by normalization) through the thickness of connection
lines. Dashed lines illustrate pruned queries. The final ordered set
answering q2 is the following one:
Ā={〈s1, f3, w2〉7 , 〈s3, f2, w1〉6 , 〈s2, f3, w2〉6 , 〈s1, f1〉3 , 〈s2, f1〉2 ,
〈s3, f2〉1}.
From the pairing with highest weight we derive the answering
query, that is: SELECT state.capital FROM state join
border on state.state name =border info.border
WHERE border info.state name=’new york’.

It is worth noting that more then a query can have the same
weight. To deal with that, we implemented a comparator that priv-
ileges queries involving less joins and embed the most referenced
table (e.g. state in the case of GEOQUERY). See, for example, the
order of the second and third pairings in Ā: they have been swapped
since f3 contains a join while f2 doesn’t.

5 Kernel Methods for Ranking
Question/Query Mapping
Once an initial rank of the candidate SQL queries has been derived,
we can rely on machine learning methods to improve the probability
of finding the correct answer in the top position. The need of design-
ing suitable representations of the question and query pairs makes
this operation quite complex. For this purpose, we rely on kernel
methods.

5.1 Kernel Methods
In kernel-based machines, both learning and classification algorithms
only depend on the inner product between instances. In several cases
this can be efficiently and implicitly computed by kernel functions by
exploiting the following dual formulation:

∑
i=1..l yiαiφ(oi)φ(o)+

b = 0, where oi and o are two objects, φ is a mapping from the
objects to feature vectors ~xi and φ(oi)φ(o) = K(oi, o) is a kernel
function implicitly defining such mapping. In case of structural ker-
nels, K determines the shape of the substructures that describe the
objects above.

In the following section, we are going to first propose a structural
representation of the question and query pairs, then we will illustrate
the Syntactic Tree Kernel (STK) [3], which computes the number
of syntactic tree fragments. In the last subsection we will show how
to engineer new kernels from them, while the reranking kernel is
presented in Sec. 5.5

Figure 5. Question/Query Syntactic trees

5.2 Representing Question and Queries Pairs
In Data Mining and Information Retrieval the so-called bag-of-words
(BOW) has been shown to be effective to represent textual docu-
ments, e.g. [13, 7]. However, in case of questions and queries, we

deal with small textual objects in which the semantic content is ex-
pressed by means of few words and poorly reliable probability dis-
tributions. In these conditions the use of syntactic representation im-
proves BOW and should be always used.

Therefore, in addition to BOW, we represent questions and queries
using their syntactic trees, as shown in Figure 5: for questions (a)
we used the Charniak’s syntactic parser [1] while for queries (b) we
implemented an ad-hoc SQL parser. The latter builds a SQL parse
tree for each query following its syntactic derivation according to
MySQL grammar. The grammar has been slightly modified to ac-
commodate the usage of the symbol • for the production of items in
the SELECT clause and in WHERE conditions. In such an SQL tree,
the internal nodes are only the SQL keywords of the query plus the
special symbol •whereas the leaves are names of tables and columns
of the database, category variables or operators. Note that, although
we eliminated comma and dot from the grammar, it is still possible to
obtain the original SQL query, by just performing a preorder traver-
sal of the tree. The above structures can be represented in a learning
algorithm using the kernel described in the next section.

5.3 Syntactic Tree Kernels (STK)
Convolution tree kernels [3] compute the similarity between two
trees T1 and T2 by counting the common sub-trees, without enu-
merating the whole fragment space. In more detail, letN1 andN2 be
the set of nodes in T1 and T2, respectively. Moreover, let Ii(n) be an
indicator variable that is 1 if subtree i is rooted at n and 0 otherwise.
Then the convolution kernel K over T1 and T2 is computed as:

STK(T1, T2) =
∑

n1∈N1,n2∈N2

∆(n1, n2) (4)

where
∆(n1, n2) =

∑
n1∈N1

∑
n2∈N2

∑
i

Ii(n1)Ii(n2)

is computed efficiently using the following recursive definition:
• If the production rules6 at n1 and n2 are different, then

∆(n1, n2) = 0.
• If the production rules at n1 and n2 are the same and n1 and n2

are pre-terminals, then ∆(n1, n2) = λ.
• If the production rules at n1 and n2 are the same and n1 and n2

are not pre-terminals, then:

∆(n1, n2) = λ

nc(n1)∏
j=1

(1 + ∆(ch(n1, j)), ch(n2, j))

where nc(n1) is the number of children of n1 in the tree and the j-
th children of node ni is denoted by ch(ni, j) (note that nc(n1) =
nc(n2) since the production rule is the same). λ (0 < λ < 1) is a
decay factor to make the kernel less variable with respect to tree-
fragment sizes.

5.4 Kernel Combination for Pairs
We need to represent the members of a pair and their interdepen-
dencies. For this purpose, given two kernel functions, k1(., .) and
k2(., .), and two pairs, p1 = 〈n1,s1〉 and p2 = 〈n2,s2〉, a first ap-
proximation is given by summing the kernels applied to the compo-
nents: K(p1, p2) = k1(n1, n2) + k2(s1, s2). This kernel will pro-
duce the union of the feature spaces of questions and queries. A more
effective kernel is the product k(n1, n2)× k(s1, s2), since it gener-
ates pairs of fragments, which are member of the Cartesian product
of kernel spaces of the questions and queries. As additional feature

6 In a syntactic tree a node with its children correspond to a production rule
of the grammar that generated it.

Figure 6. Recall of the correct answer within different k positions of the system rank

and kernel engineering, we also exploit the ability of the polynomial
kernel to add feature conjunctions. By simply applying the function
(1 + K(p1, p2))d, we can generate conjunction up to d features.
Thus, we can obtain tree fragment conjunctions and conjunctions of
pairs of tree fragments.

The next section will show how to use such kernels for an SVM-
based reranker.

5.5 Preference reranker
Our reranking model consists in learning to select the best candi-
date from a given candidate set. In order to use SVMs for train-
ing a reranker, we applied the Preference Kernel Method [14]. In
the Preference Kernel approach, the reranking problem – learning to
pick the correct candidate h1 from a candidate set {h1, . . . , hk} –
is reduced to a binary classification problem by creating pairs: posi-
tive training instances 〈h1, h2〉, . . . , 〈h1, hk〉 and negative instances
〈h2, h1〉, . . . , 〈hk, h1〉. This training set can then be used to train a
binary classifier. At classification time, pairs are not formed (since
the correct candidate is not known), while, the standard one-versus-
all binarization method is still applied.

The kernels are then engineered to implicitly represent the
differences between the objects in the pairs. If we have a valid kernel
K over the candidate space T , we can construct a preference kernel
PK over the space of pairs T × T as follows: PK(x, y) =

PK(〈x1, x2〉, 〈y1, y2〉) = K(x1, y1)+

K(x2, y2)−K(x1, y2)−K(x2, y1),
(5)

where x, y ∈ T × T . It is easy to show that PK is also a valid
Mercer’s kernel. This makes it possible to use kernel methods to train
the reranker. The several kernels defined in the previous section can
be used in place of K7 in Eq. 5.

6 The Experiments
We ran several experiments to evaluate the accuracy of our approach
for automatic generation and selection of correct SQL queries from
NL questions. We experimented with a well-known dataset Geo-
Query developed in order to study semantic parsing.

6.1 Setup
To learn the reranker, we used SVM-Light-TK8, which extends the
SVM-Light optimizer [7] with tree kernels. i.e. Syntactic Tree Kernel
(STK) as described in Section 5. We modeled many different combi-
nations described in the next section. We used the default parameters,

7 More precisely, we also multiply K for the inverse of rank position.
8 http://disi.unitn.it/˜moschitt/Tree-Kernel.htm

Figure 7. Learning curve comparison between simple answer generator
and the reranking model using the STK × STK kernel.

i.e. the cost and trade-off parameters = 1 (for normalized kernels) and
λ = 0.4 (see Sec. 4).

To generate the set of possible SQL queries we applied our algo-
rithm described in Section 3 to GEOQUERIES9 corpus. We started
from a set of 700 NL questions10. Thanks to our generative algo-
rithm we discovered and fixed all errors and inconsistencies in SQL
queries, except for 3 cases that still lead to a MySQL error. Indeed,
since we can’t test the correctness of our generated query (without a
result set to compare with) we considered a subset of 697 pairs.

6.2 Generative Results

Given a question from GeoQuery, our algorithm was able to gener-
ate a correct SQL query in the first 25 in 95.3% of the cases. This
also means that our system cannot answer to 33 questions. This is
due to (1) empty clauses set S and/orW , for example, “How many
square kilometers in the us?” does not contain any useful stem; and
(2) from mismatching nested queries, for example, “Count the states
which have elevations lower than what alabama has” contains an im-
plicit reference to a missing piece of question. In addition there are
ambiguous questions like “Which states does the colorado?” from
which we retrieve an incomplete dependency set.

For all remaining questions from which we succeed in generating
an ordered list of possible queries, we find that the query on top of
the list retrieves the correct result set in 82% of the cases. For the
other questions, it can be found within the first 10 generated answers

9 Available at http://www.cs.utexas.edu/ ml/geo.html
10 This are the first 700 questions of the 880 ones that Mooney’s group [15]

paired with logical formulas in Prolog and that Popescu et al. [11] manu-
ally converted into SQL.

Table 2. Kernel combination recall (± Std. Dev) for GEO dataset

Combination Rec@1 Rec@2 Rec@3 Rec@4 Rec@5
NO RERANKING 81.4±5.8 87.6±3.8 90.8±3.1 94.0±2.4 95.0±2.0

STK + STK 83.5±3.6 90.4±3.5 94.2±2.9 95.8±2.0 96.7±1.7
STK × STK 86.5±4.0 92.6±3.7 95.3±3.2 97.0±1.8 97.7±1.4
(1+STK2)2 87.2±3.9 94.1±3.4 95.6±2.7 97.1±1.9 97.9±1.4

BOW × STK 86.7±4.1 92.1±3.2 95.6±2.5 97.1±1.4 97.6±1.2

for 99% of the questions (once the 33 questions above have been re-
moved). This can be observed in Figure 6, which plots the Recall (of
the correct question) curve of the generative approach, i.e., the base-
line. As pointed out in the graphic, the right query is found among
the first three in 93% of the cases.

6.3 Reranking Results

Figure 6 also shows the plot for different rerankers using the fol-
lowing kernels: STK+STK, STK×STK and (1+STK×STK)2, which
provide better rankings (the first STK is applied to the question parse
trees whereas the second STK is applied to the query derivation tree).
For example, the latter kernel retrieved the correct answers 94% of
times by only using the first two answers.

To better evaluate the results of our rerankers, we applied standard
10-fold cross validation and measure the average Recall and Std Dev.
of selecting a query for each question. The results for different ker-
nel models for reranking are reported in Table 2. The first column
of Table 2 lists kernel combination by means of product and sum
between pairs of basic kernels used for the question and the query,
respectively. The other columns show the percentage of questions
for which we found at least 1 correct answer in the top @X positions
(average Recall@X over 10 folds ± Std. Dev).

The results are rather exciting since they compare favorably with
the state-of-the-art. The best system on this datasets was designed in
[16] and shows a Precision of 96.3% and a Recall of 79.3%, for an
f-measure of 86.9%, while our system shows a Precision of 82.8%
and a Recall of 87.2%, for an f-measure of 85.0% (when we include
the 33 missing questions in the evaluation). Two main facts should
be noted:

• our system performs just 2 points less than the system designed in
[16] but it does not need any hand-crafted manual resource, i.e.,
the semantic trees manually designed in [16] for each question,
and it is very simple to implement.

• unlike it has been done in previous work, we can also provide
multiple ranked answers. If we select the first n candidates, we
highly increasing the Recall of the correct answers, e.g., within
the first 2 we have a f-measure of 90% (considering the 33 missing
questions).

Other closely related work, e.g., [5], suggests that lower results
than ours can be obtained using different approaches. These rely ei-
ther on semantic grammar specified by an expert user [10], or on
enriching the information contained in the pairs [11] and implement-
ing ad-hoc rules in a semantic parser [8, 12]. Our system instead, re-
quires no intervention since the database metadata already contains
all the needed data.

Finally, we report the learning curve of one basic reranker in Fig-
ure 7, showing how recall of STK×STK increases for larger training
sets. The plot reveals that as soon as we provide a reasonable per-
centage of training data (25% of the available data corresponding to
9 folds of 700 questions – one fold is used for testing) for reranking,
the model improves on the baseline.

The main contribution of this research consist in the fact that given
a NL question we can generate a set of mapping SQL queries. More-
over if we can rely on a relatively small set of correct pairs of ques-
tions and queries to train a SVM classifier, we are able to re-rank
the set of generated pairs to select the correct one with a fairly high
accuracy.

7 Conclusions and Future Work

In this paper, we have approached the question answering task of im-
plementing a NL interface to databases by automatically generating
SQL queries based on grammatical relations and matching metadata.
To our knowledge, the underlying idea that we have proposed to build
and combine clauses sets is novelty. Additionally, we are firstly ex-
perimented with a preference reranking kernel, which is able to boost
the accuracy of our generative model.

Given the high accuracy, the simplicity and the practical useful-
ness of our approach, (e.g., we can generate the correct question in
the first 5 candidates in 95% of the cases), we believe that our meth-
ods can be successfully used in the future for real-world applications.

In the future we plan to experiment with datasets in different do-
mains (e.g. ATIS corpus). Moreover, given that current challenges in
Semantic Web tackle similar problem [6] (scaling question answer-
ing approaches to Linked Data, i.e. Question Answering over Linked
Data), it would be interesting to apply our algorithms to semantic
search and question answering over RDF data.

ACKNOWLEDGEMENTS

The research described in this paper has been partially supported
by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under the grants #247758: ETERNALS – Trustwor-
thy Eternal Systems via Evolving Software, Data and Knowledge,
and #288024: LIMOSINE – Linguistically Motivated Semantic ag-
gregation engiNes

REFERENCES

[1] E. Charniak, ‘A maximum-entropy-inspired parser’, in Proceedings of
NAACL’00, (2000).

[2] Philipp Cimiano and Michael Minock, ‘Natural language interfaces:
What is the problem? - a data-driven quantitative analysis’, in NLDB,
pp. 192–206, (2009).

[3] M. Collins and N. Duffy, ‘New ranking algorithms for parsing and tag-
ging: Kernels over discrete structures, and the voted perceptron’, in Pro-
ceedings of ACL’02, (2002).

[4] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom,
Database Systems: The Complete Book, Prentice Hall Press, Upper
Saddle River, NJ, USA, 2 edn., 2008.

[5] Alessandra Giordani and Alessandro Moschitti, ‘Corpora for automat-
ically learning to map natural language questions into sql queries’, in
Proceedings of LREC’10), Valletta, Malta, (may 2010). European Lan-
guage Resources Association (ELRA).

[6] Johan Granberg and Michael Minock, ‘A natural language interface
over the musicbrainz database’, in Proceedings of the 1st Workshop
on Question Answering over Linked Data (QALD-1) : Co-located with
the 8th Extended Semantic Web Conference, pp. 38–43, (2011). QC
20120413.

[7] T. Joachims, ‘Making large-scale SVM learning practical’, in Advances
in Kernel Methods, eds., B. Schölkopf, C. Burges, and A. Smola,
(1999).

[8] Rohit J. Kate and Raymond J. Mooney, ‘Using string-kernels for learn-
ing semantic parsers’, in Proceedings of the 21st ICCL and 44th Annual
Meeting of the ACL, pp. 913–920, Sydney, Australia, (July 2006). As-
sociation for Computational Linguistics.

[9] Bill MacCartney Marie-Catherine de Marneffe and Christopher D.
Manning, ‘Generating typed dependency parses from phrase structure
parses’, in Proceedings LREC 2006, (2006).

[10] Michael Minock, Peter Olofsson, and Alexander Näslund, ‘Towards
building robust natural language interfaces to databases’, in NLDB ’08:
Proceedings of Natural Language and Information Systems, Berlin,
Heidelberg, (2008).

[11] Ana-Maria Popescu, Oren A Etzioni, and Henry A Kautz, ‘Towards
a theory of natural language interfaces to databases’, in Proceedings
of the 2003 International Conference on Intelligent User Interfaces,
Miami, (2003). Association for Computational Linguistics.

[12] S Ruwanpura, ‘Sq-hal: Natural language to sql translator’.
[13] Gerard Salton, ‘Recent trends in automatic information retrieval’, in SI-

GIR’86, Proceedings of the 9th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, Pisa,
Italy, September 8-10, 1986, pp. 1–10. ACM, (1986).

[14] Libin Shen and Aravind K. Joshi, ‘An SVM-based voting algorithm
with application to parse reranking’, in Proceedings of the Seventh Con-
ference on Natural Language Learning at HLT-NAACL 2003, pp. 9–16,
(2003).

[15] L. R. Tang and Raymond J. Mooney, ‘Using multiple clause construc-
tors in inductive logic programming for semantic parsing’, in Proceed-
ings of the 12th European Conference on Machine Learning, pp. 466–
477, Freiburg, Germany, (2001).

[16] Luke S. Zettlemoyer and Michael Collins, ‘Learning to map sentences
to logical form: Structured classification with probabilistic categorial
grammars’, in UAI, pp. 658–666, (2005).

