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Abstract. The modeling of system semantics (in several ICT domains) by means
of pattern analysis or relational learning is a product of latest results in statistical
learning theory. For example, the modeling of natural language semantics ex-
pressed by text, images, speech in information search (e.g. Google, Yahoo,..) or
DNA sequence labeling in Bioinformatics represent distinguished cases of suc-
cessful use of statistical machine learning. The reason of this success is due to
the ability to overcome the concrete limitations of logic/rule-based approaches to
semantic modeling: although, from a knowledge engineer perspective, rules are
natural methods to encode system semantics, noise, ambiguity and errors affect-
ing dynamic systems, prevent such approached from being effective, e.g. they are
not flexible enough.

In contrast, statistical relational learning, applied to representations of system
states, i.e. training examples, can produce semantic models of system behavior
based on a large number attributes. As the values of the latter are automatically
learned, they reflect the flexibility of statistical settings and the overall model
is robust to unexpected system condition changes. Unfortunately, while attribute
weight and their relations with other attributes can be automatically learned from
examples, their design for representing the target object (e.g. a system state) has
to be manually carry out. This requires expertise, intuition and deep knowledge
about the expected system behavior. A typical difficult task is for example the
conversion of structures into attribute-value representations.

Kernel Methods are powerful techniques designed within the statistical learn-
ing theory. They can be used in learning algorithms in place of attributes, thus
simplifying object representation. More specifically, kernel functions can define
structural and semantic similarities between objects (e.g. states) at abstract level,
replacing the similarity defined in terms of attribute overlap.

In this chapter, we provide the basic notions of machine learning along with
latest theoretical results obtained in recent years. First, we show traditional and
simple machine learning algorithms based on attribute-value representations and
probability notions such as the Naive Bayes and the Decision Tree classifiers.
Second, we introduce the PAC learning theory and the Perceptron algorithm to
provide the readers with essential concepts of modern machine learning. Finally,
we use the above background to illustrate a simplified theory of Support Vector
Machines, which, along with the kernel methods, are the ultimate product of the
statistical learning theory.
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1 What Is Machine Learning?

In high school, in the mathematic or statistic classes, we have been taught techniques
that, given a set of points, e.g. xi and the values associated with them, i.e. yi, attempt
to derive the functions that best interpolates their relationships φ(xi, y). For example,
linear or polynomial regression as shown in Figure 1. These techniques, e.g. least square
fit, are the first examples of machine learning algorithms. When the output values, yi, of
the target function are finite and discrete, the regression problem is called classification,
which is very interesting for the application on real scenarios, e.g. categorization of text
documents in different topics.

Before introducing more advanced machine learning techniques, it is helpful to show
an example of their usefulness in ICT. Let us suppose that a programmer is asked to
write the following program: given some employee characteristics and a pre-defined
employee level hierarchy, automatically assign to each new employee the adequate en-
try level. Moreover, suppose that (i) the rules to determine such entry level depends on
many variables, e.g. achieved diplomas, previous working experiences, age and so on;
and (ii) there is no formal document that explains how to produce such rule set. This
is not an unrealistic situation as the target company may use such level information to
only propose tasks to employees; thus the level may be heuristically assigned by the
human resource department by using an informal algorithm.

The unlucky programmer would be soon in troubles as it is rather difficult to ex-
tract algorithmic information from people not used to think in terms of procedures and
instructions. What might be the solution?

We note that, there is a lot of data about the link between variables (i.e. the employ-
ees) and the output of the target function (i.e. the entry level). The company keeps the
data of employees along with their entry levels, thus the programmer may examine the
data and try to hand-craft the rules from it. However, if the number of employees and
the number of their characteristics are large, this would result in a very time consuming
and boring task.

x

y

Fig. 1. Polynomial interpolation of as set of points 〈xi, yi〉
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Machines have traditionally been built to perform such kind of job, thus, the solu-
tion should rely on writing an algorithm which automatically derives from examples
the employee classification rules. This kind of algorithms are a special class of machine
learning methods called example-driven or inductive learning models. They are stan-
dard in the sense that they can be applied to all problems in which there are some data
examples and we need a classification function as output.

Given such tools, the lucky programmer can only re-write the examples from the
employee database in an input format suitable for the target machine learning algorithm
and run it to derive the classification function. The latter function unlikely will provide
a correct entry level in all cases but if the commissioning company (as in this case)
accepts an certain error rate in this procedure, the application of an automatic approach
will be a feasible alternative to the hand-coding. Indeed, another output of the learning
process is usually the expected error rate. This value can be estimated by measuring the
number of classification mistakes that the classification function commits on a set of
employee data (test set) not used for training.

We have introduced what learning models may offer to the solution of real problems.
In the next section, we illustrate two simple ML approaches based on Decision Trees
and naive probabilistic models. These will clarify the importance of kernel methods for
more quickly and easily define the appropriate learning system.

1.1 Decision Trees

The introduction has shown that ML models derive a classification function from a set
of training examples (e.g. the employee data) already categorized in the target class
(e.g. the entry level). The input for the ML program is the set of examples encoded
in a meaningful way with respect to the classification task, i.e. the level assignment.
The variables describing the individual examples are usually called features and they
capture important aspects of the classification objects, e.g. the employees. For instance,
the study title is a relevant feature for the entry level whereas the preferred employee
food is not relevant thus it should not be included in the example description.

The idea of decision tree classifier (DT) algorithm is inspired by a simple principle:
the feature that correctly separates the highest number of training examples should be
used before the others. To simplify such idea, suppose that we have only two levels (0
and 1) and also the features are binary (e.g. the employee has or not a master degrees).
Intuitively, the decision tree algorithm finds the feature which splits the training set S
in two subsets S0 and S1 such that the proportion of employees of level 0 is higher in
S0 than in S whereas the proportion of employees of level 1 is higher in S1 than in S.
This means that guessing the employee level in the two new sets is easier than in S. As
we cannot hope to correctly separate all data with only one feature the algorithm will
iteratively find other features that best separates S0 and S1.

Figure 2 illustrates the decision tree which a DT algorithm may generate. First, the
PhD attribute is tested. In case the employee owns it the level is surely 1. Second,
features such as Previous Experiences and Intelligent Quotient are tested. Finally, the
tests on the leaves should output the final classification in case it had not been output
on the internal nodes.
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Does He/She own PhD? 

Previous experiences? 

no yes 

no 

High IQ? 

no 

Output: L0 Output: L1 

yes 

Output: Level 1 

...

Fig. 2. Decision tree generated for the classification task of two employee levels

In order to find the most discriminative feature, DTs use the entropy quantity. In the
general case, we have a set of classes {C1, .., Cm} distributed in the training set S with
the probabilities P (Ci), then the entropy H of P is the following:

H(P ) =
m∑

i=1

−P (Ci)log2(P (Ci)) (1)

Suppose to select a feature f which assumes {a1, .., an} values in S. If we split the
training examples according to f , we obtain n different subsets, i.e. {S1, .., Sn}, whose
average entropy is:

H̄(PS1 , .., PSn) =
m∑

i=1

H(PSi)
|Si| (2)

where, PSi is the probability distribution of Ci on the Si set and H(PSi) is the related
entropy.

The DT algorithm evaluates Eq. 2 for each feature and selects the one which is
associated with the highest value. Such approach uses the probability theory to select
the most informative features and generate the tree of decisions. In the next section,
we show another machine learning approach in which the probability theory is more
explicitly applied for the design of the decision function.

1.2 Naive Bayes

We have pointed out that machine learning approaches are useful when the informa-
tion about the target classification function (e.g. the commissioned program) is not ex-
plicitly available and is not completely accurate. Such aspects determine a degree of
uncertainty, which results in an error rate.
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Given the random nature of the expected outcome, the probability theory is well
suited for the design of a classification function that aims to achieve the highest proba-
bility in producing correct results. Indeed, we can model the output of our target func-
tion as the probability to categorize an instance in a target class, given some parameters
estimated from the training data.

More formally, let us indicate with E the classification example and let {C1, .., Cm}
be the set of categories in which we want to classify such example. We are interested
to evaluate the probability that E belongs to Ci, i.e. P (Ci|E). In other words, we know
the classifying example and we need to know its category. Our example E can be repre-
sented as a set of features {f1, .., fn} but we do not know how to relate P (Ci|f1, .., fn)
to the training examples. Thus, we can use the Bayes’ rule to derive a more useful
probability form:

P (Ci|f1, .., fn) =
P (f1, .., fn|Ci) × P (Ci)

P (f1, .., fn)
, (3)

where
m∑

i=1

P (Ci|f1, .., fn) =
m∑

i=1

P (f1, .., fn|Ci) × P (Ci)
P (f1, .., fn)

= 1

for definition of probability.
We will choose for the example E the category Ci associated with the maximum

P (Ci|E). To evaluate such probabilities, we need to select a category i and count the
number of examples that contain the whole set of features, {f1, .., fn}. Considering
that in real scenarios, a training set may contain no more than 10,000 examples, we will
unlikely be able to derive reliable statistics as n binary features determine 2n different
examples1. Thus, to make the Bayesian approach practical, we naively assume that
features are independent. Given such assumption, Eq. 3 can be rewritten as:

P (Ci|f1, .., fn) =
n∏

k=1

P (fk|Ci) × P (Ci)
P (f1, .., fn)

(4)

As P (f1, .., fn) is the same for each i, we do not need it to determine the category
associated with the maximal probability. The P (Ci) can be computed by simply count-
ing the number of training examples labeled as Ci, i.e. |Ci| and divide it by the total
number of examples in all categories:

P (Ci) =
|Ci|∑m

j=1 |Cj |
To estimate P (fk|Ci), we derive nik, i.e. the number of examples categorized as Ci

that contain the feature fk and we divide it by the Ci cardinality, i.e.

P (fk|Ci) =
nik

|Ci|

1 If we assume uniform distribution, to have a chance that a target example of only 20 features
is included in the training set, the latter has to have a size larger than 1 billion of examples.



Automatic Learning Using Kernels Methods 463

Table 1. Probability distribution of sneeze, cough and fever features inside the Allergy, Cold
and Healthy categories

Prob. Allergy Cold Healthy

P (Ci) 0.05 0.05 0.9
P (sneeze|Ci) 0.9 0.9 0.1
P (cough|Ci) 0.7 0.8 0.1
P (fever|Ci) 0.4 0.7 0.01

As an example of naive Bayesian classification suppose that we divide the healthy
conditions of target patients in thee different categories: Allergy, Cold and Healthy.
The features that we use to categorize such states are f1 = sneeze, f2 = cough and
f3 = fever. Suppose also that we can derive the probability distribution of Table 1
from a medical database, in which f1, f2 and f3 are annotated for each patient.

If we extract from our target patient the following feature representation E =
{sneeze, cough, ∼fever}, where ∼ stands for not fever, we can evaluate his/her
probabilities to be in each category i:

- P (Allergy |E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P (E)
- P (Cold |E) = (0.05)(0.9)(0.8)(0.3)/P (E) = 0.01/P (E)
- P (Healthy |E) = (0.9)(0.1)(0.1)(0.99)/P (E) = 0.0089/P (E)

According to the above table, the patient should be affected by allergy.
It is worth to note that such probabilities depend on the product of the probabilities

of each feature. It may occur, especially when the training corpus is too small, that some
of them never appear in the training examples of some categories. As a consequence,
the estimation of the probability of a feature f in the category Ci, P (f |Ci), will be 0.
This causes the product of Eq. 4 of a category i to be 0, although the contributions of the
other features in the product may be high. In general, assigning a probability equal 0 to
a feature is a rough approximation as the real probability is just too small to be observed
in the training data, i.e. we do not have enough data to find an occurrence of f .

To solve the above problem, smoothing techniques are applied. The idea is to give
to the features which do not appear in the training data a small probability, α. To keep
constant the overall feature probability mass, to the other features will be subtracted a
small portion, β, of their probability such that the overall summation is still 1.

The simplest of such techniques is called Laplace smoothing. The new feature prob-
ability is the following:

P (fk|Ci) =
nik + a × pk

|Ci| + a

where pk is a probability distribution and a is the size of a hypothetical set of examples,
where we assume to have observed pk. When we do not know any information about
the not observed features, it is logical to assume a uniform distribution, i.e. pk = 1/a
therefore a = n and

P (fk|Ci) =
nik + 1
|Ci| + n

.
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The smoothing techniques improve the Naive Bayes model by providing a better
estimation of the probability of the features not observed in the data. However, the
independence assumption seems a serious limitation to the accuracy reachable by such
approach. The next section illustrates more recent machine learning techniques, which
do not need to make such assumptions. These are called Support Vector Machines and
also offer the possibility to model object with abstract feature representations.

Exercise 1. Classify using a Naive Bayes learning algorithm and the probabilities in
Table 1 all 8 possible examples, e.g. {sneeze, cough, ∼fever}, {sneeze, ∼cough,
fever},...

Exercise 2. Modify the probabilities in Table 1 to classify e.g. {sneeze, cough,
∼fever} in class Cold with a Naive Bayes classifier.

Exercise 3. Define a new learning application using the Naive Bayes algorithm.

2 Probably Approximately Correct (PAC) Learning

So far, we have seen two different ML approaches, i.e. DT and Naive Bayes. They can
be both applied to training examples to learn classification functions and estimate their
accuracy on a test set of new examples. Intuitively, we may think that as the number
of training examples increases the accuracy increases as well. Unfortunately, this is
not generally true. For example, if we want to learn the difference between Allergy
and Cold categories using only the sneeze and cough features, we will never reach
high accuracy, no matter how many training examples we have available. This happens
because such features do not deterministically separate the two classes.

Given such problems, we need some analytical results that helps us to determine
(1) if our learning function is adequate for the target learning problem and (2) the
probability of error according to the number of available training examples. The class
of functions for which we have such analytical data is called the probably approximately
correct (PAC) class.

The statistical learning theory provides mathematical tool to determine if a class of
functions is PAC learnable. At the base of such result there is a new statistical quantity
designed by two scientists, Vapnik and Chervonenkis, called VC-dimension. This gives
a measure of the learning complexity and can be used to estimate the classification error.

In the next sections, we formally define the PAC function class, provide a practi-
cal example to derive the error probability of PAC functions and introduce the VC-
dimension, which automatizes the estimation of such error.

2.1 Formal PAC Definition

The aim of ML is to learn some functions from a set (Tr) of training examples. These
latter can be seen as data points that are associated with some discrete values C =
{C1, .., Cn}, in case of classification problems or real number R, in case of regression
problem. We focus only on classification problems, i.e. on finding a function f : X → C
using Tr ∈ X . In general, the training examples are randomly drawn thus we need to
deal with a probability distribution D on X .
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The function f can be learned by using an algorithm, which can generate only a
small subset of all possible functions. Such algorithm derives a function h ∈ H from
the examples, where H is the class of all possible hypotheses (functions) derivable with
it. This suggests that h will hardly be equal to f , consequently, it is very useful to define
a measure of its error.

A reasonable measure is the percentage of points for which f and h differ, i.e. the
probability that given an example x, P [f(x) �= h(x)]. Note that D is particularly im-
portant. As a trivial example, if the probability D(x0) of an element x0 ∈ X is 1 and
f(x0) = h(x0), the error rate will be 0, independently of the number of x ∈ Tr for
which f(x) �= h(x).

The above case is very rare and does not occur in practical situations. On the con-
trary, there is a large class of functions whose error decreases as the number of training
examples increases. These constitute the PAC learnable functions. Their formal defini-
tion is the following:

– Let the function f : X → C belongs to the class F , i.e. f ∈ F , where X is the
domain and C is the codomain of f .

– Suppose that the training and the test documents x ∈ X are generated with a
probability D.

– Let h ∈ H be the function that we learned from the examples provided that we can
learn only functions in H , i.e. in the hypothesis space.

– The error of h, error(h), is defined as P [f(x) �= h(x)], i.e. the percentage of
miss-classified examples.

– Let m be the size of the training set, then F is a class of PAC learnable functions if
there is a learning algorithm such that:

• ∀f ∈ F , ∀D ∈ X and ∀ε > 0, δ < 1
• ∃m such that P [error(h) > ε] < δ, i.e. the probability that the h’s error is

greater than ε is lower than δ.

In other words, a class of functions F is PAC learnable if we can find a learning al-
gorithm which, given an enough number of training examples, produces a function h
such that its error is greater than ε with a probability less than δ. Thus by choosing low
values for ε and δ, we can have a low error (i.e. < ε) with high probability (i.e. 1 − δ).

Next section clarifies the above idea with a practical example.

2.2 An Example of PAC Learnable Functions

Suppose that we need to learn the concept of medium-built people. Given such problem
two very important features are the height and the weight of a person. One of these
features alone would not be able to characterize the concept of medium-built body. For
example, a person which has a height of 1,75 meters may be seen as medium person
but if her/his weight is 130 kg we would immediately change our idea.

As the above two features assume real number values, we can represent people on
a cartesian chart, where the X-axis and Y-axis correspond to height and the weight,
respectively. Figure 3 illustrates such idea.
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Weight 

Height 

Weight-Max 

Weight-Min 

Height-Min Height-Max 

c

h

Fig. 3. The medium-built person concept on a cartesian chart

This representation implies that the medium-built person concept c is represented
by a rectangle, which defines the maximum and minimum weight and height. Suppose
that we have available some training examples, i.e. the measures of a set of people,
which may or may not have a medium-build body, we can represent them in the chart.
The white points, which are outside the rectangle c, are not medium-built people all the
others (black points) are instead in such class.

As we assumed that our hypothesis c has a rectangular shape whose edges are parallel
to the axes, our ML algorithm should only learn h from the rectangle set, namely the
set of hypotheses H . Additionally, since the error is defined as P [f(x) �= h(x)], we can
evaluate it by dividing the area between the rectangles c and h by the area of c2.

In order to design an effective algorithm, we need to exploit the training data. In this
respect, a simple way is to avoid errors in the training set; hence our learning algorithm
is the following:

Select the smallest rectangle having its edges parallel to the axes that includes all train-
ing examples corresponding to medium-built people.

Since it includes all positive points, it would not make mistakes on them on the train-
ing set. Selecting also the smallest rectangle also prevents to commit error on the more
external negative points.

We would like to verify that this is a PAC algorithm. To do this, we fix an error ε, a
target probability δ and evaluate the P [error(h) > ε], i.e. the probability of generating
a bad hypothesis, h. (to be a PAC algorithm, such probability must be lower then δ).
Since P [error(h) > ε], h correctly classifies one training example with a probability
< 1 − ε. This implies that, in the cartesian representation of Figure 4.A, the rectangle
associated with a bad h is included in the smallest rectangle of good hypotheses (i.e.
the hypotheses of area equal to 1− ε). Additionally, our algorithm produces a rectangle
(a hypothesis) that includes all m training points.

Now, let us consider the four strips between c and h: a bad hypothesis cannot con-
temporary touch all four strips as shown by the frames B and C. It follows that, a

2 It can be proven that this is true for any distribution D.
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A B C

h
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h
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c

Fig. 4. Probabilities of bad and good hypotheses

necessary condition for the existence of a bad hypothesis is to have all the m points at
least outside of one of the 4 strips. Necessary means that it must happen each time we
learn a bad hypothesis and, consequently, the probability of drawing m points out of at
least one strip is higher than a hypothesis to be bad. In other words, the latter is upper
bounded by the former probability. More in detail, the evaluation of the probability of
the latter follows these steps:

1. the probability that a point x is out of one strip, P (x out of 1 strip) = (1 − ε/4);
2. the probability that m points are out of one strip, P (x out of 1 strip)m = (1−ε/4)m;
3. the probability that m points are out of 4 strips < 4P (x out of 1 strip)m = 4(1 −

ε/4)m;

Therefore, we can use the inequality, P [error(h) > ε] < 4(1 − ε/4)m < δ, to impose
our δ requirement. From ⇒ 4(1 − ε/4)m < δ, we can derive an upperbound3 to m
(satisfying our constraint):

m >
ln(δ/4)

ln(1 − ε/4)

From Taylor’s series, we know that

−ln(1 − y) = y + y2/2 + y3/3 + .. ⇒ (1 − y) < e(−y)

We can apply the above inequality to ln(1 − ε/4) to obtain

m >
ln(δ/4)

ln(1 − ε/4)
⇒ m >

4ln(4/δ)
ε

. (5)

Eq. 5 proves that the medium-built people concept is PAC learnable as we can reduce
the error probability as much as we want, provided that we have an enough number of
training examples.

It is interesting to note that a general upperbound for PAC functions can be evaluated
by considering the following points:

1. the probability that a bad hypothesis is consistent with m training examples (i.e.
classifies them correctly) is (1 − ε)m;

3 Consider that we divide by ln(1− ε/4), which is always negative, thus we need to change the
direction of the inequality.
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2. the number of bad hypotheses is less than the total number of hypotheses N ⇒
3. P (h bad and consistent with m examples) = N(1− ε)m < Ne−εm

= Ne−mε < δ.
It follows that

m >
1
ε
(ln

1
δ

+ lnN). (6)

We can use Eq. 6 when N can be estimated. For example, if we want to learn a Boolean
function of n variable, their number is 22n

> N ⇒ a rough upperboud of the needed
m is 1

ε (ln 1
δ + 2nln2).

In most cases the above bound is not useful and we need to derive one specific to
our target problem as we did for the medium-built concept. However, when the feature
space is larger than 2 the manual procedure may become much more complex. In the
next section, we will see a characterization of PAC functions via VC dimension, which
makes more systematic derivation of PAC properties.

2.3 The VC-Dimension

The previous section has shown that some function classes can be learned with any
accuracy and this depends on the properties of the adopted learning algorithm. For
example, the fact that we use rectangles as our hypothesis space (the one from which
our algorithm selects h) instead of circles or lines impacts on the learning capacity of
our algorithm.

Indeed, it is easy to show that using lines, we would have never been able to separate
medium-built people from the others whereas the rectangle class is rather effective to
do this. Thus, we need a property that allows us to determine which hypothesis class
is more appropriate to learn a target function f ∈ F . Moreover, we note that, in most
of the cases, we do not know the nature of the target f . We know only the training
examples, consequently, our property should be derived only from them and by the
function class H that we have available.

The Vapnik and Chervonenkis (VC) dimension aims to characterize functions from
a learning perspective. The intuitive idea is that different function classes have differ-
ent capacity in separating data points: some of them can just separate some configura-
tions of points whereas others can separate a much larger number of configurations, i.e.
they are in some sense more general purpose. The VC dimension captures this kind of
property.

Intuitively, VC dimension, i.e. the learning capacity, determines the generalization
reachable during learning:

– A function selected from a high class capacity is expected to easily separate the
training points since it has the capacity to adapt to any training set. This will result
on a learned function too specific to the used training data (i.e. it will overfit data).
An immediate consequence is that the probability to correctly separate the test set
will be lower.

– In contrast, a function that belongs to a low capacity class can separate a lower
number of data configurations thus if it successful separates the current training
points, the probability to well separate the test data will be higher.

The definition of VC dimension depends on the concept of shattering a set of points.
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l
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A B

Fig. 5. VC dimension of lines in a bidimensional space

Definition 1. Shattered Sets
Let us consider binary classification functions f ∈ F , f : X → {0, 1}. We say that
S ⊆ X is shattered by a function class F if ∀S′ ⊆ S, ∃f ∈ F :

f(x) =

{
0 iff x ∈ S′

1 iff x ∈ S − S′ (7)

The definition says that a set of points S is shattered by a function class F if for any
assignment of the points in S into {0, 1}, we can find f ∈ F that reproduces such
assignments.

A graphical interpretation is given in Figure 5. In the frame A, we have 3 points
represented in a two-dimensional space. The target function class L is the one of linear
functions. For any assignment of points (white is 0 and black is 1), we can find a line
l ∈ L that separates them. From l we can derive the shattering function f by assigning
f(x1, x2)=0 iff x2 < l(x1) and 1 otherwise, i.e., if the point is under the line, we assign
0 to it and 1 otherwise. Consequently, a set of three points can be shattered by linear
functions.

On the contrary, the 4 points in the frame B cannot be shattered. More precisely,
there are not 4 points that can be shattered by linear functions since we can always
draw a tetragon having such points as vertices and assign the same color to the opposite
vertices. If the line assigned the same color to the opposite vertices there would always
be a vertex on the same side of such two points with a different color.

Definition 2. VC dimension
The VC dimension of a function class F is the maximum number of points that can be
shattered by F .

Since Figure 5.A shows a set of tree points shattered by a linear function, such class
has at least a VC dimension of 3 in the bidimensional space. We have also proved that
4 points cannot be shattered, consequently, the VC dimension of linear functions on the
plane is exactly 3. Note that, selecting points that are linearly dependent, i.e., they lie
on the same lines, will not work as we cannot hope to shatter them if we assign the
same label to those external an a different color to the internal one. In particular it can
be proven (see [16]) the following:

Theorem 1. Consider a set of m points in R
n and choose any one of the points as

origin, then they can be shattered by oriented hyperplanes if and only if the position
vectors of the remaining points are linearly independent.
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A B C

D E F

Fig. 6. VC dimension of (axis aligned) rectangles

As a consequence we have the following

Corollary 1. The VC dimension of the class of functions composed by the set of ori-
ented hyperplanes in R

n is n+1.

Proof. We can always choose one of the points as origin of vectors and the remaining
n points as their end such that the vectors are linearly independent. However, we can
never choose n + 1 of such points (since no set of n + 1 vectors in R

n can be linearly
independent).

This Corollary is useful to determine the VC dimension of linear functions in an n di-
mensional space. Linear functions are the building block of Support Vector Machines,
nevertheless, there are other examples of classifiers which have different VC dimen-
sion such as the rectangle class. The following example is useful to understand how to
evaluate the VC dimension of geometric classifiers.

Example 1. The VC dimension of rectangles with edges parallel to the axes
To evaluate the VC dimension of rectangles, we (i) make a guess about its value, for
instance 4, (ii) show that 4 points can be shattered by rectangles and (iii) prove that no
set of 5 points can be shattered.

Let us choose 4 points that are not aligned like in Figure 6.A. Then, we give all
possible assignments to the 4 points. For example, Figure 6.B shows two pairs of ad-
jacent points, which have the same color. In Section 2.2, we established that points
inside the rectangle belong to medium-built people, i.e., they are positive examples of
such class. Without loss of generality, we can keep such assumption and use the black
color to indicate that the examples are positive (or that they are assigned to 1). The only
relevant aspect is that we need to be consistent with such choice for all assignments,
i.e., we cannot change our classification algorithm while we are testing it on the point
configurations.

From the above convention, it follows that given the assignments B, C, D, E and F
in Figure 6, we need to find the rectangles that contain only black points and leave the
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white points outside. The rectangles C, D, E, F separate half positive and half negative
examples. It is worth noting that if we have 3 positive (or 3 negative) examples, find-
ing the shattering rectangles is straight forward (see Frame E), consequently, we have
proven that the VC dimension is at least 4.

To prove that is not greater than 4, let us consider a general 5 point set. We can create
4 different rankings of the points by sorting in ascending and descending order by their
x-coordinate and by their y-coordinate. Then, we color the top point of each of the 4
lists in black and the 5th point in white. The latter will be included (by construction) in
the rectangle of the selected 4 vertices. Since any rectangular hypothesis h that contains
the four points must contain the previous rectangle, we cannot hope to exclude the 5th
point from h. Consequently, no set of 5 points can be shattered by the rectangle class.

Finally, we report two theorems on the sample complexity, which, given a certain
wished error, derive upper and lower bounds of the required number of training ex-
amples. We also report one theorem on the error probability of a hypothesis given the
VC dimension of its class. These theorems make clear the link between VC dimension
and PAC learning.

Theorem 2. (upper bound on sample complexity, [15])
Let H and F be two function classes such that F ⊆ H and let A an algorithm that

derives a function h ∈ H consistent with m training examples. Then, ∃c0 such that
∀f ∈ F , ∀D distribution, ∀ε > 0 and δ < 1 if

m >
c0

ε

(
d × ln

1
ε

+
1
δ

)

then with a probability 1 − δ,
errorD(h) ≤ ε,

where d is the VC dimension of H and errorD(h) is the error of h according to the
data distribution D.

Theorem 3. (lower bound on sample complexity, [15])
To learn a concept class F whose VC-dimension is d, any PAC algorithm requires
m = O(1

ε (1
δ + d)) examples.

Theorem 4. (Vapnik and Chervonenkis, [64])
Let H be a hypothesis space having VC dimension d. For any probability distribution
D on X × {−1, 1}, with probability 1 − δ over m random examples S, any hypothesis
h ∈ H that is consistent with S has error no more than

error(h) ≤ ε(m, H, δ) =
2
m

(
d × ln

2e × m

d
+ ln

2
δ

)
,

provided that d ≤ m and m ≥ 2/ε.

Exercise 4. Compare the upper bounds on sample complexity of rectangles derived in
Section 2.2 with the one derivable from Theorem 2.

Exercise 5. Evaluate the VC dimensions of triangles aligned and not aligned to the
axes.

Exercise 6. Evaluate the VC dimension of circles.
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3 Support Vector Machines

The previous section has shown that classification instances can be represented with
numerical features. These can also be associated with the coordinates of points in an
n-dimensional space, where a classification function can be modeled with geometrical
objects, e.g., lines or hyperplanes. The latter constitute the basic building block of the
statistical learning theory, which has produced Support Vector Machines (SVMs).

In this section, we first introduce the Perceptron algorithm, which can be considered
the simplest SVM and then we define the theory and algorithms of more advanced
SVMs. One of their important properties is the possibility to use kernel functions to
deal with non linear classification problems. Thus, a conclusive section will introduce
the kernel theory and its application to advanced learning tasks, e.g., the classification
of syntactic-parse trees.

3.1 Perceptrons

Once objects are projected into a vector space, they can be simply classified by linear
functions, e.g., Figure 5.A shows a line that separates black from white points. One ad-
vantage of such mathematical objects is their simplicity that allows us to design efficient
learning algorithms, i.e., efficient approaches to find separating lines or hyperplanes in
high dimensional spaces.

The reader may wonder if such simplicity limits the capability of the learning algo-
rithms or if we can use them to learn any possible learnable function. It is clear that
with only one hyperplane, we cannot learn any function. For example, Figure 5 shows
four points that cannot be separated in the Frame B. However, this is not a definitive
limitation of linear functions as:

1. By modeling our learning problem more effectively, i.e., by choosing more appro-
priate features, the target problem could become linearly separable. For example,
the four points of the previous figure can be divided in a three-dimensional space.
This means that we need just to add a significant feature to solve the problem.

2. We can use linear functions in cascade. The resulting function is more expres-
sive and, depending on the number of levels in such cascade, we can design any
function.

The thesis that linear functions are sufficient to derive any learnable relation from ex-
amples is supported by the observation that human beings’ brain is structured with such
sort of devices.

To clarify this point, let us consider an animal neuron shown in Figure 7. It is con-
stituted by one set of inputs, i.e., the dendrites, which are connected to a cellular body,
i.e., soma, via synapses. These are able to amplify or attenuate an incoming signal. The
neuron output is transported by the axon, whose filaments are connected to the dendrites
of other neurons. When a chemical signal is transmitted to the dendrites, it is amplified
by the synapses before entering in the soma. If the overall signal, coming from differ-
ent synapses, overcomes a certain threshold, the soma will launch a signal to the other
neurons through the axon.
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Fig. 7. An animal neuron

Fig. 8. An artificial neuron

The artificial version of the neuron is often referred to as Perceptron and can be
sketched as in Figure 8. Each dendrite is an input xi associated with a weight wi. The
product between the weights and the input signals are summed together and if such
summation overcomes the threshold b the output y will be 1, otherwise it will be 0.
The interesting aspect is that the output of such neuron can be modeled with a simple
hyperplane whose equation is:

y = w1x1 + .. + wnxn + b = w · x + b = 0 (8)

where the final perceptron classification function output is obtained by applying the
signum function to y, i.e.,

f(x) = sgn(w · x + b) (9)

Eq. 9 shows that linear functions are equivalent to neurons, which, combined to-
gether, constitute the most complex learning device that we know, i.e., the human brain.
The signum function simply divides the data points in two sets: those that are over and
those that are below the hyperplane. The major advantage of using linear functions is
that given a set of training points, {x1, .., xm}, each one associated with a classification
label yi (i.e., +1 or −1), we can apply a learning algorithm that derives the vector w
and the scalar b of a separating hyperplane, provided that at least one exists.
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Fig. 9. Separating hyperplane and geometric margin

For example, Figure 9.A shows a set of training points (black positives and white
negatives) along with a separating hyperplane in a 2-dimensional space. The vector w
and the scalar −b/||w|| are the gradient vector and the distance of such hyperplane from
the origin, respectively. Indeed, from Eq. 8, −b = w · x thus −b/||w|| = w/||w|| · x,
where x is any point lying on the hyperplane and w/||w|| · x is the projection of x on
the gradient (i.e., the normal to the hyperplane).

The perceptron learning algorithm exploits the above properties along with the con-
cept of functional and geometric margin.

Definition 3. The functional margin γi of an example xi with respect to a hyperplane
w · x + b = 0 is the product yi(w · xi + b).

Definition 4. The geometric margin γ′
i of an example xi with respect to a hyperplane

w · x + b = 0 is yi( w
||w|| · xi + b

||w||).

It is immediate to see in Figure 9.B that the geometric margin γ′
i is the distance of the

point xi from the hyperplane as:

– w
||w|| · xi is the projection of xi on the line crossing the origin and parallel to w;

– the distance of the hyperplane from the origin is subtracted to the above quantity,
i.e., b

||w|| . It follows that we obtain the distance of x from the hyperplane.
– When the example x is negative, it is located under the hyperplane thus the product

w ·xi is negative. If we multiply such quantity by the label yi (i.e., -1), we make it
positive, i.e., we obtain a distance.

Given the above geometric concepts, the algorithm of perceptron learning in Table 2,
results very clear. At step k = 0, w and b are set to 0, i.e., w0 = 0 and b0 = 0, whereas
R is set to the maximum length of the training set vectors, i.e., the maximum among
the distances of the training points from the origin. Then, for each xi, the functional
margin yi(wk · xi + bk) is evaluated. If it is negative it means that xi is not correctly
classified by the hyperplane, i.e., yi disagrees with the point position with respect to
the hyperplane. In this case, we need to adjust the hyperplane to correctly classify the
example. This can be done by rotating the current hyperplane (i.e., by summing ηyixi
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Table 2. Rosenblatt’s perceptron algorithm

function Perceptron(training-point set: {x1, .., xm})
begin

w0 = 0; b0 = 0; k = 0;
R = max1≤i≤m ||xi||
repeat

no errors = 1;
for (i = 1 to m)

if yi(wk · xi + bk) ≤ 0 then
wk+1 = wk + ηyixi;
bk+1 = bk + ηyiR

2;
k = k + 1;no errors = 0;

end(if)
until no errors;
return k, wk and bk ;

end

to wk) as shown in the charts A and B of Figure 10 and by translating the hyperplane
of a quantity ηyiR

2 as shown in the chart C.
The perceptron algorithm always converges when the data points are linearly sepa-

rable as stated by the following.

Theorem 5. (Novikoff) Let S be a non-trivial training and let γ > 0 and R =
max1≤i≤m ||xi||. Suppose that there exists a vector wopt such that ||wopt|| = 1 and
yi(wopt · xi + bopt) ≥ γ ∀i = 1, .., m. Then the number of mistakes made by the

perceptron algorithm on S is at most
(

2R
γ

)2
.

This theorem proves that the algorithm converges in a finite number of iterations
bounded by

(
2R
γ

)2
provided that a separating hyperplane exists. In particular:

– the condition ||wopt|| = 1 states that normalized vectors are considered, i.e. wopt =
wopt

||wopt|| , thus the functional margin is equal to the geometric margin.

– yi(wopt ·xi+bopt) ≥ γ is equivalent to state that for such hyperplane the geometric
margin of the data points are ≥ γ > 0, i.e. any point is correctly classified by the
hyperplane, wopt · x + bopt = 0.

If the training data is not separable then the algorithm will oscillate indefinitely correct-
ing at each step some misclassified example.

An interesting property showed by the Novikoff theorem is that the gradient w is
obtained by adding vectors proportional to the examples xi to 0. This means that w
can be written as a linear combination of training points, i.e.,

w =
m∑

i=1

αiyixi (10)
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Fig. 10. Perceptron algorithm process

Since the sign of the contribution xi is given by yi, αi is positive and is proportional
(through the η factor) to the number of times that xi is incorrectly classified. Difficult
points that cause many mistakes will be associated with large αi.

It is interesting to note that, if we fix the training set S, we can use the αi as alter-
native coordinates of a dual space to represent the target hypothesis associated with w.
The resulting decision function is the following:

h(x) = sgn(w · x + b) = sgn

(( m∑

i=1

αiyixi

)
· x + b

)
=

= sgn

(
m∑

i=1

αiyi(xi · x) + b

)
(11)

Given the dual representation, we can adopt a learning algorithm that works in the
dual space described in Table 3.

Note that as the Novikoff’s theorem states that the learning rate η only changes the
scaling of the hyperplanes, it does not affect the algorithm thus we can set η = 1.
On the contrary, if the perceptron algorithm starts with a different initialization, it will
find a different separating hyperplane. The reader may wonder if such hyperplanes are
all equivalent in terms of the classification accuracy of the test set; the answer is no:
different hyperplanes may lead to different error probabilities. In particular, the next
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Table 3. Dual perceptron algorithm

function Perceptron(training-point set: {x1, .., xm})
begin

α = 0; b0 = 0;
R = max1≤i≤m ||xi||
repeat

no errors = 1;
for (i = 1 to m)

if yi

(∑m
j=1 αjyj(xj · x) + b

) ≤ 0 then
αi = αi + 1;
b = b + yiR

2;
no errors = 0;

end(if)
until no errors;
return α and b ;

end

section shows that the maximal margin hyperplane minimizes an upperbound to the
error probability on the space of all possible hyperplanes.

3.2 Maximal Margin Classifier

The PAC theory suggests that, for a class of target functions, a hypothesis h that is
learned consistently with the training set provides low error probability and we can
show an analytical bound for such error. This idea can be applied to hyperplanes to
estimate the final error probability but also to improve the learning algorithm of lin-
ear classifiers. Indeed, one of the interesting results of the statistical learning theory is
that to reduce such probability, we need to select the hyperplane (from the set of sep-
arating hyperplanes) that shows the maximum distance between positive and negative
examples. To understand better this idea let us introduce some definitions:

Definition 5. The functional (geometric) margin distribution of a hyperplane (w,b)
with respect to a training set S is the distribution of the functional (geometric) margins
of the examples, i.e. yi(w · xi + b)∀xi ∈ S.

Definition 6. The functional (geometric) margin of a hyperplane is the minimum
functional (geometric) margin of the distribution.

Definition 7. The functional (geometric) margin of a training set S is the maximum
functional (geometric) margin of a hyperplane over all possible hyperplanes. The hy-
perplane that realizes such maximum is called the maximal margin hyperplane.

Figure 11 shows the geometric margins of the points xi and xj (part A) and the ge-
ometric margin of the hyperplane (part B) whereas Figure 12 shows two separating
hyperplanes that realize two different margins.
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Fig. 12. Margins of two hyperplanes

Intuitively, the larger the margin of a hyperplane is, the lower the probability of
error is. The important result of the statistical learning theory is that (i) analytical up-
perbounds to such error can be found; (ii) they can be proved to be correlated to the
hyperplanes; and (iii) the maximal margin hyperplane is associated with the lowest
bound.

In order to show such analytical result let us focus on finding the maximal margin
hyperplane. Figure 13 shows that a necessary and sufficient condition for a hyperplane
w · x + b = 0 to be a maximal margin hyperplane is that (a) two frontier hyperplanes
(negative and positive frontiers) exist and (b) they hold the following properties:

1. their equations are w · x + b = k and w · x + b = −k, i.e. they are parallel to
the target hyperplane and are both located at a distance of k ( k

||w|| if w is not a
normalized vector;

2. such equations satisfy the constraints yi(w · xi + b) ≥ k ∀xi ∈ S, i.e. they both
separate the data points in S; and

3. the distance of the hyperplane from such frontiers is maximal with respect to other
frontiers.
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First, property 1 follows from a simple consideration: suppose that: (i) the nearest pos-
itive example x+ is located at a distance of γi from a hyperplane h1; (ii) the nearest
negative example x− is located at a distance of γj ( �= γi); and (iii) the h1 margin is the
minimum between γi and γj . If we select a hyperplane h2 parallel to h1 and equidis-
tant from x+ and x−, it will be at a distance of k = γi+γj

2 from both x+ and x−.
Since k ≥ min{γi, γj}, the margin of h2 equidistant from the frontier points is always
greater or equal than other hyperplanes.

Second, the previous property has shown that the nearest positive examples is located
on the frontier w · x + b = k thus all the other positive examples x+ have a functional
margin w · x+ + b larger than k. The same rational applies to the negative examples
but, to work with positive quantities, we multiply (w · xi + b) by the label yi, thus, we
obtain the constrain yi(w · xi + bk) ≥ k.

Finally, the third property holds since k
||w|| is the distance from one of the two frontier

hyperplanes which, in turn, is the distance from the nearest points, i.e. the margin.
From these properties, it follows that the maximal margin hyperplane can be derived

by solving the optimization (maximization) problem below:

{
max k

||w||
yi(w · xi + b) ≥ 1 ∀xi ∈ S,

(12)

where k
||w|| is the objective function, yi(w · xi + b) = 1 ∀xi ∈ S are the set of

linear equality constraints hi(w) and yi(w · xi + b) > 1 ∀xi ∈ S are the set of
linear inequality constraints, gi(w). Note that (i) the objective function is quadratic
since ||w|| = w ·w and (ii) we can rescale the distance among the data points such that
the maximal margin hyperplane has a margin of exactly 1. Thus, we can rewrite Eq. 12
as follows: {

max 1
||w||

yi(w · xi + b) ≥ 1 ∀xi ∈ S
(13)

Moreover, we can transform the above maximization problem in the following min-
imization problem:



480 A. Moschitti

{
min ||w||
yi(w · xi + b) ≥ 1 ∀xi ∈ S

(14)

Eq. 14 states that to obtain a maximal margin hyperplane, we have to minimize the
norm of the gradient w but it does not provide any analytical evidence on the benefit of
choosing such hyperplane. In contrast, the PAC learning theory provides the link with
the error probability with the following theorem:

Theorem 6. (Vapnik, 1982) Consider hyperplanes w · x + b = 0 in a R
n vector space

as hypotheses. If all examples xi are contained in a ball of radius R and

∀xi ∈ S, yi(w · xi + b) ≥ 1, with ||w|| ≤ A

then this set of hyperplanes has a VC-dimension d bounded by

d ≤ min(R2 × A2, n) + 1

The theorem states that if we set our hypothesis class HA to be the set of hyperplanes
whose w has a norm ≤ A then the VC dimension is less or equal than R2 × A2.
This means that if we reduce ||w||, we obtain a lower A and consequently a lower VC
dimension, which in turn is connected to the error probability by the Theorem 4 (lower
VC dim. results in lower error bound). This proves that, when the number of training
examples is fixed, a lower VC-dimension will produce a lower error probability. In
other words, as the maximum margin hyperplane minimizes the bound on the error
probability, it constitutes a promising hypothesis for our learning problem.

Other interesting properties of the maximum margin hyperplane are derived from the
optimization theory of convex functions over linear constraints. The main concepts of
such theory relate on the following definition and theorem:

Definition 8. Given an optimization problem with objective function f(w), and equal-
ity constraints hi(w) = 0, i = 1, .., l, we define the Lagrangian function as

L(w, β) = f(w) +
l∑

i=1

βihi(w),

where the coefficient βi are called Lagrange multipliers.

Theorem 7. (Lagrange) A necessary condition for a normal point w∗ to be a minimum
of f(w) subject to hi(w) = 0, i = 1, .., l, with f , hi ∈ C is

∂L(w∗, β∗)
∂w

= 0 (15)

∂L(w∗, β∗)
∂β

= 0 (16)

for some values of β∗. The above conditions are also sufficient provided that ∂L(β∗) is
a convex function of w.
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Proof. (necessity)
A continue function has a local maximum (minimum) when the partial derivatives are
equal 0, i.e. ∂f(w)

∂w = 0. Since, we are in presence of constraints, it is possible that
∂f(w∗)

∂w �= 0. To respect such equality constraints, given the starting point w∗, we can

move only perpendicularly to ∂hi(w
∗)

∂w . In other words, we can only move perpendic-

ularly to the subspace V spanned by the vectors ∂hi(w
∗)

∂w , i = 1, .., l. Thus, if a point
∂f(w∗)

∂w lies on V , any direction we move causes to violate the constraints. In other
words, if we start from such point, we cannot increase the objective function, i.e. it
can be a minimum or maximum point. The V memberships can be stated as the linear
dependence between ∂f(w∗)

∂w and ∂hi(w
∗)

∂w , formalized by the following equation:

∂f(w∗)
∂w

+
l∑

i=1

βi
∂hi(w∗)

∂w
= 0 (17)

where ∃i : βi �= 0. This is exactly the condition 15. Moreover, Condition 16 holds
since ∂L(w∗,β∗)

∂β = (h1(w∗), h2(w∗), ..., hl(w∗)) and all the constraints hi(w∗) = 0
are satisfied for the feasible solution w∗. �

The above conditions can be applied to evaluate the maximal margin classifier, i.e.
the Problem 14, but the general approach is to transform Problem 14 in an equivalent
problem, simpler to solve. The output of such transformation is called dual problem and
it is described by the following definition.

Definition 9. Let f(w), hi(w) and gi(w) be the objective function, the equality con-
straints and the inequality constraints (i.e. ≤) of an optimization problem, and let
L(w, α, β) be its Lagrangian, defined as follows:

L(w, α, β) = f(w) +
m∑

i=1

αigi(w) +
l∑

i=1

βihi(w)

The Lagrangian dual problem of the above primal problem is

maximize θ(α, β)

subject to α ≥ 0

where θ(α, β) = infw∈W L(w, α, β)

The strong duality theorem assures that an optimal solution of the dual is also the opti-
mal solution for the primal problem and vice versa, thus, we can focus on the transfor-
mation of Problem 14 according to the Definition 9.

First, we observe that the only constraints in Problem 14 are the inequalities4 [gi(w)
= −(yi(w · xi + b) − 1)] ≥ 0 ∀xi ∈ S.

4 We need to change the sign of the inequalities to have them in the normal form, i.e. gi(·) ≤ 0.
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Second, the objective function is w · w. Consequently, the primal Lagrangian5 is

L(w, b, α) =
1
2
w · w −

m∑

i=1

αi[yi(w · xi + b) − 1], (18)

where αi are the Lagrange multipliers and b is the extra variable associated with the
threshold.

Third, to evaluate θ(α, β) = infw∈W L(w, α, β), we can find the minimum of the
Lagrangian by setting the partial derivatives to 0.

∂L(w, b, α)
∂w

= w −
m∑

i=1

yiαixi = 0 ⇒ w =
m∑

i=1

yiαixi (19)

∂L(w, b, α)
∂b

=
m∑

i=1

yiαi = 0 (20)

Finally, by substituting Eq. 19 and 20 into the primal Lagrangian we obtain

L(w, b, α) =
1
2
w · w −

m∑

i=1

αi[yi(w · xi + b) − 1] =

=
1
2

m∑

i,j=1

yiyjαiαjxi · xj −
m∑

i,j=1

yiyjαiαjxi · xj +
m∑

i=1

αi

=
m∑

i=1

αi − 1
2

m∑

i,j=1

yiyjαiαjxi · xj

(21)

which according to the Definition 9 is the optimization function of the dual problem
subject to αi ≥ 0. In summary, the final dual optimization problem is the following:

maximize
m∑

i=1

αi − 1
2

m∑

i,j=1

yiyjαiαjxi · xj

subject to αi ≥ 0, i = 1, .., m

m∑

i=1

yiαi = 0

where w =
∑m

i=1 yiαixi and
∑m

i=1 yiαi = 0 are the relation derived from eqs. 19 and
20. Other conditions establishing interesting properties can be derived by the Khun-
Tucker theorem. This provides the following relations for an optimal solution:

5 As w ·w or 1
2
w ·w is the same optimization function from a solution perspective, we use the

1
2

factor to simplify the next computation.
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∂L(w∗, α∗, β∗)
∂w

= 0
∂L(w∗, α∗, β∗)

∂β
= 0

α∗
i gi(w∗) = 0, i = 1, .., m
gi(w∗) ≤ 0, i = 1, .., m

α∗
i ≥ 0, i = 1, .., m

The third equation is usually called Karush-Khun-Tucker condition and it is very
interesting for Support Vector Machines as it states that α∗

i × [yi(w · xi + b)− 1] = 0.
On one hand, if α∗

i = 0 the training point xi does not affect w as stated by Eq. 19.
This means that the separating hyperplane and the associated classification function do
not depend on such vectors. On the other hand, if α∗

i �= 0 ⇒ [yi(w · xi + b) − 1] = 0
⇒ yi(w · xi + b) = −1, i.e. xi is located on the frontier. Such data points are called
support vectors (SV) as they support the classification function. Moreover, they can be
used to derive the threshold b by evaluating the average between the projection of a
positive and a negative SV on the gradient w∗, i.e.:

b∗ = −w∗ · x+ + w∗ · x−

2

The error probability upperbound of SVMs provides only a piece of evidence of
the maximal margin effectiveness. Unfortunately, there is no analytical proof that such
approach produces the best linear classifier. Indeed, it may exist other bounds lower
than the one derived with the VC dimension and the related theory. Another drawback
of the maximal margin approach is that it can only be applied when training data is
linearly separable, i.e. the constraints over the negative and positive examples must be
satisfied. Such hard conditions also define the name of such model, i.e., Hard Mar-
gin Support Vector Machines. In contrast, the next section introduces the Soft Margin
Support Vector Machines, whose optimization problem relaxes some constraints, i.e., a
certain number of errors on the training set is allowed.

3.3 Soft Margin Support Vector Machines

In real scenario applications, training data is often affected by noise due to several
reasons, e.g. classification mistakes of annotators. These may cause the data not to be
separable by any linear function. Additionally, the target problem itself may be not
separable in the designed feature space. As result, the Hard Margin SVMs will fail to
converge.

In order to solve such critical aspect, the Soft Margin SVMs have been designed.
Their main idea is to allow the optimization problem to provide solutions that can vi-
olate a certain number of constraints. Intuitively, to be as much as possible consistent
with the training data, such number of errors should be the lowest possible. This trade-
off between the separability with highest margin and the number of errors can be en-
coded by (a) introducing slack variables ξi in the inequality constraints of Problem 14
and (b) the number of errors as quantity to be minimized in the objective function. The
resulting optimization problem is
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min ||w|| + C
∑m

i=1 ξ2
i

yi(w · xi + b) ≥ 1 − ξi, ∀i = 1, .., m

ξi ≥ 0, i = 1, .., m

(22)

whose the main characteristics are:

- The constraint yi(w · xi + b) ≥ 1 − ξi allows the point xi to violate the hard
constraint of Problem 14 of a quantity equal to ξi. This is clearly shown by the
outliers in Figure 14, e.g. xi.

- If a point is misclassified by the hyperplane then the slack variable assumes a value
larger than 1. For example, Figure 14 shows the misclassified point xi and its asso-
ciated slack variable ξi, which is necessarily > 1. Thus,

∑m
i=1 ξi is an upperbound

to the number of errors. The same property is held by the quantity,
∑m

i=1 ξ2
i , which

can be used as an alternative bound6.
- The constant C tunes the trade-off between the classification errors and the margin.

The higher C is, the lower number of errors will be in the optimal solution. For
C → ∞, Problem 22 approximates Problem 14.

- Similarly to the hard margin formulation, it can be proven that minimizing ||w|| +
C
∑m

i=1 ξ2
i minimizes the error probability of classifiers. Even though these are not

perfectly consistent with the training data (they do not necessarily classify correctly
all the training data).

- Figure 15 shows that by accepting some errors, it is possible to find better hypothe-
ses. In the part A, the point xi prevents to derive a good margin. As we accept to
mistake xi, the learning algorithm can find a more suitable margin (part B).

As it has been done for the hard optimization problem, we can evaluate the primal
Lagrangian:

L(w, b, ξ, α) =
1
2
w · w +

C

2

m∑

i=1

ξ2
i −

m∑

i=1

αi[yi(w · xi + b) − 1 + ξi], (23)

6 This also results in an easier mathematical solution of the optimization problem.



Automatic Learning Using Kernels Methods 485

ξi

B) Soft Margin SVM A) Hard Margin SVM 

ix
r

ix
r

Fig. 15. Soft Margin vs. Hard Margin hyperplanes

where αi are Lagrangian multipliers.
The dual problem is obtained by imposing stationarity on the derivatives respect to

w, ξ and b:

∂L(w, b, ξ, α)
∂w

= w −
m∑

i=1

yiαixi = 0 ⇒ w =
m∑

i=1

yiαixi

∂L(w, b, ξ, α)
∂ξ

= Cξ − α = 0

∂L(w, b, ξ, α)
∂b

=
m∑

i=1

yiαi = 0

(24)

By substituting the above relations into the primal, we obtain the following dual
objective function:

w(α) =
m∑

i=1

αi − 1
2

m∑

i,j=1

yiyjαiαjxi · xj +
1

2C
α · α − 1

C
α · α =

=
m∑

i=1

αi − 1
2

m∑

i,j=1

yiyjαiαjxi · xj − 1
2C

α · α =

=
m∑

i=1

αi − 1
2

m∑

i,j=1

yiyjαiαj

(
xi · xj +

1
C

δij

)
,

(25)

where the Kronecker’s delta, δij = 1 if i = j and 0 otherwise. The objective function
above is subject to the usual constraints:

{
αi ≥ 0, ∀i = 1, .., m∑m

i=1 yiαi = 0

This dual formulation can be used to find a solution of Problem 22, which extends
the applicability of linear functions to classification problems not completely linearly
separable. The separability property relates not only to the available class of hypotheses,
e.g. linear vs. polynomial functions, but it strictly depends on the adopted features. Their
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roles is to provide a map between the examples and vectors in R
n. Given such mapping,

the scalar product provides a measure of the similarity between pairs of examples or,
according to a more minimalist interpretation, it provides a partitioning function based
on such features.

The next section shows that, it is possible to directly substitute the scalar product
of two feature vectors with a similarity function between the data examples. This al-
lows for avoiding explicit feature design and consequently enabling the use of similarly
measures called kernel functions. These, in turn, define implicit feature spaces.

4 Kernel Methods

One of the most difficult step on applying machine learning is the feature design. Fea-
tures should represent data in a way that allows learning algorithms to separate positive
from negative examples. The features used by SVMs are used to build vector represen-
tations of data examples and the scalar product between them. This, sometimes, simply
counts the number of common features to measure how much the examples are sim-
ilar. Instead of encoding data in feature vectors, we may design kernel functions that
provide such similarity between examples avoiding the use of explicit feature represen-
tations. The reader may object that the learning algorithm still requires the supporting
feature space to model the hyperplane and the data points, but this is not necessary if
the optimization problem is solved in the dual space.

The real limit of the kernel functions is that they must generate a well defined inner
product vector space. Such property will hold if the Mercer’s conditions are satisfied.
Fortunately, there are many kernels, e.g. polynomial, string, lexical and tree kernels that
satisfy such conditions and give us the possibility to use them in SVMs.

Kernels allow for more abstractly defining our leaning problems and in many cases
allow for solving non linear problems by re-mapping the initial data points in a sepa-
rable space as shown by Figure 16. The following example illustrates one of the case
in which a non-linear function can be expressed in a linear formulation in a different
space.



Automatic Learning Using Kernels Methods 487

Example 2. Overcoming linear inseparability
Suppose that we want to study the force of interactions between two masses m1 and
m2. m1 is free to move whereas m2 is blocked. The distance between the two masses
is indicated with r and their are subject to the Newtown’s gravity law:

f(m1, m2, r) = C
m1m2

r2
,

Thus mass m1 naturally tends to move towards m2.
We apply a force fa of inverse direction with respect to f to m1. As a result, we note

that sometimes m1 approaches m2 whereas other times it gets far from it. To study such
phenomenon, we carry out a set of experiments with different experimental parameters,
i.e. m1, m2, r and fa and we annotate the result of our action: success if m1 gets closer
to m2 (or does not move) and failure otherwise.

Each successful experiment can be considered a positive example whereas unsuc-
cessful experiments are considered negative examples. The parameters above constitute
feature vectors representing an experiment. We can apply SVMs to learn the classifi-
cation of new experiments 〈fa, m1, m2, r〉 in successful or unsuccessful, i.e. if fa −
f(m1, m2, r) ≥ 0 or otherwise, respectively. This means that SVMs have to learn the
gravitational law function, f(m1, m2, r), but, since this is clearly non-linear, hard mar-
gin SVMs will not generally converge and soft margin SVMs will provide inaccurate
results.

The solution for this problem is to map our initial feature space in another vec-
tor space, i.e. 〈fa, m1, m2, r〉 → 〈lnfa, ln(m1), ln(m2), ln(r)〉 = 〈k, x, y, z〉. Since
ln
(
f(m1, m2, r)

)
= ln(C) + ln(m1) + ln(m2) − 2ln(r) = c + x + y − 2z, we can

express the logarithm of gravity law with a linear combination of the transformed fea-
tures in the new space. In more detail, points above (or lying on) the ideal hyperplane
k−(c+x+y−2z) = 0, i.e. points that satisfy k−(c+x+y−2z) ≥ 0 (or equivalently
that satisfy fa − f(m1, m2, r) ≥ 0), are successful experiments whereas points below
such hyperplane are unsuccessful. The above passages prove that a separating hyper-
plane of the training set always exists in the transformed space, consequently SVMs
will always converge (with an error dependent on the number of training examples).

4.1 The Kernel Trick

Section 3.1 has shown that the Perceptron algorithm, used to learn linear classifiers, can
be adapted to work in the dual space. In particular, such algorithm (see Table 3) clearly
shows that it only exploits feature vectors in the form of scalar product. Consequently,
we can replace feature vectors xi with the data objects oi, substituting the scalar product
xi · xj with a kernel function k(oi, oj), where oi are the initial objects mapped into xi

using a feature representation, φ(.). This implies that xi ·xj = φ(oi)·φ(oj ) = k(oi, oj).
Similarly to the Perceptron algorithm, the dual optimization problem of Soft Margin

SVMs (Eq. 25) uses feature vectors only inside a scalar product, which can be substi-
tuted with k(oi, oj). Therefore, the kernelized version of the soft margin SVMs is
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maximize

m∑

i=1

αi − 1
2

m∑

i,j=1

yiyjαiαj

(
k(oi, oj) +

1
C

δij

)

αi ≥ 0, ∀i = 1, .., m
m∑

i=1

yiαi = 0

Moreover, Eq. 10 for the Perceptron appears also in the Soft Margin SVMs (see
conditions 24), hence we can rewrite the SVM classification function as in Eq. 11 and
use a kernel inside it, i.e.:

h(x) = sgn

(
m∑

i=1

αiyik(oi, oj) + b

)

The data object o is mapped in the vector space trough a feature extraction procedure
φ : o → (x1, ..., xn) = x, more in general, we can map a vector x from one feature
space into another one:

x = (x1, ..., xn) → φ(x) = (φ1(x), ..., φn(x))

This leads to the general definition of kernel functions:

Definition 10. A kernel is a function k, such that ∀ x,z ∈ X

k(x, z) = φ(x) · φ(z)

where φ is a mapping from X to an (inner product) feature space.

Note that, once we have defined a kernel function that is effective for a given learning
problem, we do not need to find which mapping φ corresponds to. It is enough to know
that such mapping exists. The following proposition states the conditions that guarantee
such existence.

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x, z) be a symmetric function on X. Then

K(x, z) is a kernel function if and only if the matrix

k(x, z) = φ(x) · φ(z)

is positive semi-definite (has non-negative eigenvalues).

Proof. Let us consider a symmetric function on a finite space X = {x1, x2, ..., xn}

K =
(
K(xi, xj)

)n
i,j=1

Since K is symmetric there is an orthogonal matrix V such that K = V ΛV ′

where Λ is a diagonal matrix containing the eigenvalues λt of K, with corresponding
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eigenvectors vt = (vti)n
i=1, i.e., the columns of V . Now assume that all the eigenvalues

are non-negatives and consider the feature mapping:

φ : xi →
(√

λtvti

)n
t=1

∈ R
n, i = 1, .., n.

It follows that

φ(xi) · φ(xj) =
n∑

t=1

λtvtivtj = (V ΛV ′)ij = Kij = K(xi, xj).

This proves that K(x, z) is a valid kernel function that corresponds to the mapping
φ. Therefore, the only requirement to derive the mapping φ is that the eigenvalues
of K are non-negatives since if we had a negative eigenvalue λs associated with the
eigenvector vs, the point

z =
n∑

i=1

vsiφ(xi) =
√

ΛV ′vs.

in the feature space would have norm squared

||z||2 = z · z = v′
sV

√
Λ
√

ΛV ′vs = v′
sV ΛV ′vs = v′

sKvs = λs < 0,

which contradicts the geometry of the space [20].

4.2 Polynomial Kernel

The above section has shown that kernel functions can be used to map a vector space in
other spaces in which the target classification problem becomes linearly separable (or
in general easier). Another advantage is the possibility to map the initial feature space
in a richer space which includes a high number of dimensions (possibly infinite): this
may result in a better description of the objects and higher accuracy. For example, the
polynomial kernel maps the initial features in a space which contains both the original
features and all the possible feature conjunctions. For example, given the components
x1 and x2, the new space will contain x1x2. This is interesting for text categorization as
the polynomial kernel automatically derives the feature hard rock or hard disk
from the individual featureshard, rock and disk. The conjunctive features may help
to disambiguate between Music Store and Computer Store categories.

The great advantage of using kernel functions is that we do not need to keep the
vectors of the new space in the computer memory to evaluate the inner product. For
example, suppose that the initial feature space has a cardinality of 100,000 features,
i.e., a typical size of the vocabulary in a text categorization problem, only the number of
word pairs would be 1010, which cannot be managed by many learning algorithms. The
polynomial kernel can be used to evaluate the scalar product between pairs of vectors
of such huge space by only using the initial space and vocabulary, as it is shown by the
following passages:
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(x · z)2 =
( n∑

i=1

xizi

)2 =
( n∑

i=1

xizi

)( n∑

j=1

xizi

)

=
n∑

i=1

n∑

j=1

xixjzizj =
∑

i,j∈{1,..,n}
(xixj)(zizj)

=
m∑

k=1

XkZk = X · Z,

where:

– x and z are two vectors of the initial space,

– X and Z are the vectors of the final space and

– Xk = xixj , Zk = zizj with k = (i − 1) × n + j and m = n2.

We note that

– the mapping between the two space is φ(x) = (xixj) for j = 1, .., n and for
i = 1, .., n;

– to evaluate X · Z, we just compute the square of the scalar product in the initial
space, i.e. (x · z)2; and

– the final space contains conjunctions and also the features of the initial space (xixi

is equivalent to xi).

Additionally, since xixj = xjxi, the conjunctions receive the double of the weight of
single features. The number of distinct features are: n for i = 1 and j = 1, .., n; (n−1)
for i = 2 and j = 2, .., n; ..; and 1 for i = n and j = n. It follows that the total number
of terms is

n + (n − 1) + (n − 2) + .. + 1 =
n∑

k=1

k =
n(n + 1)

2

Another way to compute such number it to consider that, to build all the monomials,
the first variable can be chosen out of n + 1 possibilities (n symbols to form conjunc-
tions and the empty symbol for the single feature) whereas for the second variable only
n chances are available (no empty symbol at this time). This way, we obtain all permu-
tations of each monomial of two variables. To compute the number of distinct features,
we can divide the number of monomials, i.e. (n + 1)n, by the number of permutations
of two variables, i.e. 2! = 2. The final quantity can be expressed with the binomial
coefficient

(
n+1

2

)
.

Given the above observation, we can generalize the kernel from degree 2 to a degree
d by computing (x · z)d. The results are all monomials of degree d or equivalently
all the conjunctions constituted up to d features. The distinct features will be

(
n+d−1

d

)

since we can choose either the empty symbol up to d − 1 times or n variables.
A still more general kernel can be derived by introducing a constant in the scalar

product computation. Hereafter, we show the case for a degree equal to two:
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(x · z + c)2 =
( n∑

i=1

xizi + c
)2 =

( n∑

i=1

xizi + c
)( n∑

j=1

xizi + c
)

=

=
n∑

i=1

n∑

j=1

xixjzizj + 2c

n∑

i=1

xizi + c2 =

=
∑

i,j∈{1,..,n}
(xixj)(zizj) +

n∑

i=1

(√
2cxi

)(√
2czi

)
+ c2

Note that the second summation introduces n individual features (i.e. xi) whose
weights are controlled by the parameter c which also determines the strength of the
degree 0. Thus, we add (n+1) new features to the

(
n+1

2

)
features of the previous kernel

of degree 2. If we consider a generic degree d, i.e. the kernel (x ·z +c)d, we will obtain(
n+d−1

d

)
+ n + d − 1 =

(
n+d

d

)
distinct features (which have at least distinct weights).

These are all monomials up to and including the degree d.

4.3 String Kernel

Kernel functions can be also applied to discrete space. As a first example, we show their
potentiality on the space of finite strings.

Let Σ be a finite alphabet. A string is a finite sequence of characters from Σ, includ-
ing the empty sequence. We denote by |s| the length of the string s = s1, .., s|s|, where
si are symbols, and by st the string obtained by concatenating the strings s and t. The
string s[i : j] is the substring si, .., sj of s. We say that u is a subsequence of s, if there
exist indices I = (i1, ..., i|u|), with 1 ≤ i1 < ... < i|u| ≤ |s|, such that uj = sij ,
for j = 1, ..., |u|, or u = s[I] for short. The length l(I) of the subsequence in s is
i|u| − ii + 1. We denote by Σ∗ the set of all string

Σ∗ =
∞⋃

n=0

Σn

We now define the feature space, F = {u1, u2..} = Σ∗, i.e. the space of all possible
substrings. We map a string s in R

∞ space as follows:

φu(s) =
∑

I:u=s[I]

λl(I) (26)

for some λ ≤ 1. These features measure the number of occurrences of subsequences
in the string s, weighting them according to their lengths. Hence, the inner product of
the feature vectors for two strings s and t gives a sum over all common subsequences
weighted according to their frequency of occurrences and lengths, i.e.

K(s, t) =
∑

u∈Σ∗
φu(s) · φu(t) =

∑

u∈Σ∗

∑

I:u=s[I]

λl(I)
∑

J :u=t[J]

λl(J) =

=
∑

u∈Σ∗

∑

I:u=s[I]

∑

J :u=t[J]

λl(I)+l(J) (27)
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The above equation defines a class of similarity functions known as string kernels
or sequence kernels. These functions are very effective for extracting features from
streams. For example, in case of text categorization, they allow the learning algorithm
to quantify the matching between two different words, phrases, sentences or whole
documents. Given two strings, Bank and Rank:

– B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are substrings of
Bank.

– R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are substrings of
Rank.

Such substrings are features in the Σ∗ that have non-null weights. These are evaluated
by means of Eq. 26, e.g. φB(Bank) = λ(i1−i1+1) = λ(1−1+1) = λ, φk(Bank) =
λ(i1−i1+1) = λ(4−4+1) = λ, φan(Bank) = λ(i2−i1+1) = λ(3−2+1) = λ2 and
φBk(Bank) = λ(i2−i1+1) = λ(4−1+1) = λ4.

Since Eq. 27 requires that the substrings in Bank and Rank match, we need to evalu-
ate Eq. 26 only for the common substrings, i.e.:

- φa(Bank) = φa(Rank) = λ(i1−i1+1) = λ(2−2+1) = λ,
- φn(Bank) = φn(Rank) = λ(i1−i1+1) = λ(3−3+1) = λ,
- φk(Bank) = φk(Rank) = λ(i1−i1+1) = λ(4−4+1) = λ,
- φan(Bank) = φan(Rank) = λ(i2−i1+1) = λ(3−2+1) = λ2,
- φank(Bank) = φank(Rank) = λ(i3−i1+1) = λ(4−2+1) = λ3,
- φnk(Bank) = φnk(Rank) = λ(i2−i1+1) = λ(4−3+1) = λ2,
- φak(Bank) = φak(Rank) = λ(i2−i1+1) = λ(4−2+1) = λ3.

It follows that K(Bank,Rank) = (λ, λ, λ, λ2, λ3, λ2, λ3) · (λ, λ, λ, λ2, λ3, λ2, λ3)
= 3λ2 + 2λ4 + 2λ6.

From this example, we note that short non-discontinuous strings receive the highest
contribution, e.g. φB(Bank) = λ > φan(Bank) = λ2. This may appear counterin-
tuitive as longer string should be more important to characterize two textual snippets.
Such inconsistency disappears if we consider that when a large string is matched, the
same will happen for all its substrings. For example, the contribution coming from
Bank, in the matching between the ”Bank of America” and ”Bank of Italy”
strings, includes the match of B, a, n, k, Ba, Ban,..., an so on.

Moreover, it should be noted that Eq. 27 is rather expensive from a computational
viewpoint. A method for its fast computation trough a recursive function was proposed
in [38].

First, a kernel over the space of strings of length n, Σn is computed, i.e.

Kn(s, t) =
∑

u∈Σn

φu(s) · φu(t) =
∑

u∈Σn

∑

I:u=s[I]

∑

J :u=t[J]

λl(I)+l(J).

Second, a slightly different version of the above function is considered, i.e.

K ′
i(s, t) =

∑

u∈Σn

φu(s) · φu(t) =
∑

u∈Σi

∑

I:u=s[I]

∑

J :u=t[J]

λ|s|+|t|−i1−j1+2,
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for i = 1, .., n − 1. K ′
i(s, t) is different than Kn(s, t) since, to assign weights, the

distances from the initial character of the substrings to the end of the string, i.e. |s| −
i1 + 1 and |t| − j1 + 1, are used in place of the distances between the first and last
characters of the substrings, i.e. l(I) and l(J).

It can be proved that Kn(s, t) is evaluated by the following recursive relations:

- K ′
0(s, t) = 1, for all s,t,

- K ′
i(s, t) = 0, if min (|s|,|t|)< i,

- Ki(s, t) = 0, if min (|s|,|t|)< i,
- K ′

i(sx, t) = λK ′
i(s, t) +

∑

j:tj=x

K ′
i−1(s, t[1 : j − 1])λ|t|−j+2, i = 1, ..,n − 1,

- Kn(sx, t) = Kn(s, t) +
∑

j:tj=x

K ′
n−1(s, t[1 : j − 1])λ2.

The general idea is that K ′
i−1(s, t) can be used to compute Kn(s, t) when we increase

the size of the input strings of one character, e.g. Kn(sx, t). Indeed, K ′
i and Ki compute

the same quantity when the last character of the substring u ∈ Σi, i.e. x, coincides with
the last character of the string, i.e. the string can be written as sx. Since K ′

i(sx, t) can
be reduced to K ′

i(s, t), the recursion relation is valid. The computation time of such
process is proportional to n × |s| × |t|, i.e. an efficient evaluation.

4.4 Lexical Kernel

The most used Information Retrieval (IR) paradigm is based on the assumptions that
(a) the semantic of a document can be represented by the semantic of its words and
(b) to express the similarity between document pairs, it is enough to only consider the
contribution from matching terms. In this view, two words that are strongly related, e.g.
synonyms, do not contribute with their relatedness to the document similarity.

More advanced IR models attempt to take the above problem into account by intro-
ducing term similarities. Complex and interesting term similarities can be implemented
using external (to the target corpus) thesaurus, like for example the Wordnet hierarchy
[26]. For example, the terms mammal and invertebrate are under the term animal in
such hierarchy. In turns, the terms dog and cat, are under the term mammal. The length
of the path that connects two terms in such hierarchy intuitively provides a sort of sim-
ilarity metrics. Once a term relatedness is designed, document similarities, which are
the core functions of most Text Categorization algorithms, can be designed as well.

Given a term similarity function σ and two documents d1 and d2 ∈ D (the document
set), we define their similarity as:

K(d1, d2) =
∑

f1∈d1,f2∈d2

(w1w2) × σ(f1, f2) (28)

where w1 and w2 are the weights of the words (features) f1 and f2 in the documents
d1 and d2, respectively. Interestingly such similarity can be a valid kernel function and,
therefore, used in SVMs. To prove this we need to verify the Mercer’s conditions, i.e.
that the associated kernel matrix (see Proposition 1) is positive semi-definite. We can
apply single value decomposition and check the eigenvalues. In case we find that some
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of them are negative, we can still use the lexical kernel by squaring its associated matrix.
Indeed, the kernel K(d1, d2) can be written as P = M ′ · M , where M is the matrix
defined by σ(f1, f2) and M ′ is its transposed. Since P is surely positive semi-definite
(it is a square), K(d1, d2) = P satisfies the Mercer’s conditions.

The lexical kernel has been successfully applied to improve document categoriza-
tion [8] when few documents are available for training. Indeed, the possibility to match
different words using a σ similarity allows SVMs to recover important semantic
information.

5 Tree Kernel Spaces

The polynomial and the string kernels have shown that, starting from an initial feature
set, they can automatically provide a very high number of interesting features. These are
a first example of the usefulness of kernel methods. Other interesting kernel approaches
aim to automatically generate large number of features from structures. For example,
tree kernels are able to extract many types of tree fragments from a target tree. One of
their purposes is to model syntactic information in a target learning problem. In partic-
ular, tree kernels seem well suited to model syntax in natural language applications, e.g.
for the extraction of semantic predicative structures like bought(Mary, a cat, in Rome)
[54].

Indeed, previous work shows that defining linguistic theories for the modeling of
natural languages (e.g. [35]) is a complex problem, far away from a sound and complete
solution, e.g. the links between syntax and semantic are not completely understood
yet. This makes the design of syntactic features for the automatic learning of semantic
structures complex and consequently both remarkable deep knowledge about the target
linguistic phenomena and research effort are required.

Kernel methods, which do not require any noticeable feature design effort, can pro-
vide the same accuracy of manually designed features and sometime they can suggest
new solutions to the designer to improve the model of the target linguistic phenomenon.

The kernels that we consider in next sections represent trees in terms of their sub-
structures (fragments). Their are based on the general notion of convolution kernels
hereafter reported.

Definition 11. General Convolution Kernels
Let X, X1, .., Xm be separable metric spaces, x ∈ X a structure and x = x1, ..., xm

its parts, where xi ∈ Xi ∀i = 1, .., m. Let R be a relation on the set X×X1×..×Xm

such that R(x, x) holds if x are the parts of x. We indicate with R−1(x) the set {x :
R(x, x)}. Given two objects x and y ∈ X , their similarity K(x, y) is defined as:

K(x, y) =
∑

x∈R−1(x)

∑

y∈R−1(y)

m∏

i=1

Ki(xi, yi) (29)

Subparts or fragments define a feature space which, in turn, is mapped into a vector
space, e.g. R

n. In case of tree kernels, the similarity between trees is given by the
number of common tree fragments. These functions detect if a common tree subpart
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Fig. 18. A syntactic parse tree with its SubTrees (STs)

belongs to the feature space that we intend to generate. For such purpose, the fragment
type needs to be described. We consider three important characterizations: the SubTrees
(STs), the SubSet Trees (SSTs) and the Partial Trees (PTs).

5.1 SubTree, SubSet Tree and Partial Tree Kernels

Trees are directed, connected acyclic graphs with a special node called root. Their re-
cursive definition is the following: (1) the root node, connected with one or more nodes
(called children), is a tree and (2) a child can be a tree, i.e. a SubTree, or a node without
children, i.e. a leaf.

In case of syntactic parse trees each node with its children is associated with a gram-
mar production rule, where the symbol at left-hand side corresponds to the parent and
the symbols at right-hand side are associated with the children. The terminal symbols of
the grammar are always associated with the leaves of the tree. For example, Figure 17
illustrates the syntactic parse of the sentence "Mary brought a cat to school".

We define a SubTree (ST) as any node of a tree along with all its descendants. For
example, the line in Figure 17 circles the SubTree rooted in the NP node. A SubSet Tree
(SST) is a more general structure which not necessarily includes all its descendants. The
only restriction is that an SST must be generated by applying the same grammatical rule
set that generated the original tree, as pointed out in [19]. Thus, the difference with the
SubTrees is that the SST’s leaves can be associated with non-terminal symbols. For
example, [S [N VP]] is an SST of the tree in Figure 17 and it has the two non-
terminal symbols N and VP as leaves.
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If we relax the constraint over the SSTs, we obtain a more general form of substruc-
tures that we defined as Partial Trees (PTs). These can be generated by the application
of partial production rules of the original grammar. For example, [S [N VP]], [S
[N]] and [S [VP]] are valid PTs of the tree in Figure 17.

Given a syntactic tree, we may represent it by means of the set of all its STs, SSTs
or PTs. For example, Figure 18 shows the parse tree of the sentence "Mary brought

a cat" together with its 6 STs. The number of SSTs is always higher. For example,
Figure 19 shows 10 SSTs (out of all 17) of the SubTree of Figure 18 rooted in VP.
Figure 20 shows that the number of PTs derived from the same tree is even higher (i.e.
30 PTs). These different substructure numbers provide an intuitive quantification of the
different information level of the diverse tree-based representations.

5.2 The Kernel Functions

The main idea of the tree kernels is to compute the number of the common substruc-
tures between two trees T1 and T2 without explicitly considering the whole fragment
space. For this purpose, we slightly modified the kernel function proposed in [19] by
introducing a parameters σ, which enables the ST or the SST evaluation. For the PT
kernel function, we designed a new algorithm.

The ST and SST Computation. Given a tree fragment space {f1, f2, ..} = F , we
defined the indicator function Ii(n), which is equal to 1 if the target fi is rooted at node
n and 0 otherwise. It follows that:

K(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

Δ(n1, n2) (30)

where NT1 and NT2 are the sets of the T1’s and T2’s nodes, respectively and Δ(n1, n2)=∑|F|
i=1 Ii(n1)Ii(n2). This latter is equal to the number of common fragments rooted at

the n1 and n2 nodes. We can compute Δ as follows:
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1. if the productions at n1 and n2 are different then Δ(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 have only leaf children

(i.e. they are pre-terminal symbols) then Δ(n1, n2) = 1;
3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-terminals

then

Δ(n1, n2) =
nc(n1)∏

j=1

(σ + Δ(cj
n1

, cj
n2

)) (31)

where σ ∈ {0, 1}, nc(n1) is the number of the children of n1 and cj
n is the j-th child of

the node n. Note that, as the productions are the same nc(n1) = nc(n2).
When σ = 0, Δ(n1, n2) is equal 1 only if ∀j Δ(cj

n1
, cj

n2
) = 1, i.e. all the produc-

tions associated with the children are identical. By recursively applying this property, it
follows that the SubTrees in n1 and n2 are identical. Thus, Eq. 30 evaluates the SubTree
(ST) kernel. When σ = 1, Δ(n1, n2) evaluates the number of SSTs common to n1 and
n2 as proved in [19].

To include the leaves as fragments it is enough to add, to the recursive rule set above,
the condition:

0. if n1 and n2 are leaves and their associated symbols are equal then
Δ(n1, n2) = 1

We will refer to such extended kernels as ST+bow (bag-of-words) and SST+bow.
Moreover, we use the decay factor λ as follows7:Δ(nx, nz) = λ and Δ(nx, nz) =
λ
∏nc(nx)

j=1 (σ + Δ(cj
n1

, cj
n2

)).
The Δ computation complexity is O(|NT1 | × |NT2 |) time as proved in [19]. We will

refer to this basic implementation as the Quadratic Tree Kernel (QTK).

The PT Kernel Function. The evaluation of the Partial Trees is more complex since
two nodes n1 and n2 with different child sets (i.e. associated with different productions)
can share one or more children, consequently they have one or more common substruc-
tures, e.g. [S [DT JJ N]] and [S [DT N N]] have the [S [N]] (2 times) and
the [S [DT N]] in common.

To evaluate all possible substructures common to two trees, we can (1) select a child
subset from both trees, (2) extract the portion of the syntactic rule that contains such
subset, (3) apply Eq. 31 to the extracted partial productions and (4) sum the contribu-
tions of all children subsets.

Such subsets correspond to all possible common (non-continuous) node subse-
quences and can be computed efficiently by means of sequence kernels [38]. Let
J1 = (J11, .., J1r) and J2 = (J21, .., J2r) be the index sequences associate with the
ordered child sequences of n1 and n2, respectively, then the number of PTs is evaluated
by the following Δ function:

Δ(n1, n2) = 1 +
∑

J1,J2,l(J1)=l(J2)

l(J1)∏

i=1

Δ(cJ1i
n1

, cJ2i
n2

), (32)

7 To have a similarity score between 0 and 1, we also apply the normalization in the kernel
space, i.e. Knormed(T1, T2) = K(T1,T2)√

K(T1,T1)×K(T2,T2)
.
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where l(J1) indicates the length of the target child sequence whereas J1i and J2i are
the ith children in the two sequences. We note that:

1. Eq. 32 is a convolution kernel [34] (see Definition 11).
2. Given a sequence of common children, J , the product in Eq. 32 evaluates the num-

ber of common PTs rooted in n1 and n2. In these PTs, the children of n1 and n2

are all and only those in J .
3. By summing the products associated with each sequence we evaluate all possible

PTs (the root is included).
4. Tree kernels based on sequences were proposed in [72; 21] but they do not evaluate

all tree substructures, i.e. they are not convolution kernels.
5. We can scale down the contribution from the longer sequences by adding two decay

factors λ and μ:

Δ(n1, n2) = μ
(
λ +

∑

J1,J2,l(J1)=l(J2)

λd(J1)+d(J2)

l(J1)∏

i=1

Δ(cJ1i
n1

, cJ2i
n2

)
)

where d(J1) = J1l(J1) − J11 + 1 and d(J2) = J2l(J2) − J21 + 1.

Finally, as the sequence kernels and the Eq. 31 can be efficiently evaluated, the same
can be done for Eq. 32. The computational complexity of PTK is O(pρ2|NT1 |× |NT2 |),
where p is the largest subsequence of children that we want to consider and ρ is the
maximal outdegree observed in the two trees. However, as shown in [40], the average
running time tends to be linear for natural language syntactic trees.

6 Conclusions and Advanced Topics

In this chapter we have shown the basic approaches of traditional machine learning such
as Decision Trees and Naive Bayes and we have introduced the basic concepts of the
statistical learning theory such as the characterization of learning via the PAC theory
and VC-dimension. We have also presented, the Perceptron algorithm to introduce a
simplified theory of Support Vector Machines (SVMs) and kernel methods. Regarding
the latter, we have shown some of their potentials, e.g. the Polynomial, String, Lexi-
cal and Tree kernels by alluding to their application for Natural Language Processing
(NLP).

The interested reader, who would like to acquire much more practical knowledge
on the use of SVMs and kernel methods can refer to the following publications clus-
tered by topics (mostly from NLP): Text Categorization [9; 56; 10; 6; 5; 11; 12; 7;
13]; Corefernce Resolution [66; 65]; Question Answering [51; 13; 14; 55; 49; 50];
Shallow Semantic Parsing [54; 32; 45; 3; 30; 46; 31; 48; 42; 47; 57; 22; 44]; Con-
cept segmentation and labeling of text and speech [23; 24; 59; 36; 37; 33]; Relational
Learning [68; 69; 52; 67; 70; 71; 58; 43; 39; 27]; SVM optimization [40; 1; 41; 2; 53;
60; 61; 63; 62]; Mapping Natural Language to SQL [28; 29]; Protein Classification [17;
18]; Audio classification [4]; and Electronic Device Failure detection [25].

The articles above are available at http://disi.unitn.it/moschitti/
Publications.htm whereas complementary training material can be found at

http://disi.unitn.it/moschitti/Publications.htm
http://disi.unitn.it/moschitti/Publications.htm
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http://disi.unitn.it/moschitti/teaching.html. Additionally, SVM
software comprising several structural kernels can be downloaded from http://
disi.unitn.it/moschitti/Tree-Kernel.htm.
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NLDB 2009. LNCS, vol. 5723, pp. 207–221. Springer, Heidelberg (2010)

29. Giordani, A., Moschitti, A.: Syntactic Structural Kernels for Natural Language Interfaces
to Databases. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
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