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Motivations

Approach to automatic Question Answering Systems
1. Extract query keywords from the question

2. Retrieve candidate passages containing such keywords (or 
synonyms)

3. Select the most promising passage by means of query and 
answer similarity

For example
Who is the President of the United States?

(Yes) The president of the United States is Barack Obama

(no) Glenn F. Tilton is President of the United Airlines





Motivations

TREC has taught that this model is to weak

Consider a more complex task, i.e. a Jeopardy cue

When hit by electrons, a phosphor gives off 
electromagnetic energy in this form

Solutions: photons/light

What are the most similar fragments retrieved by a search 
engine?





Motivations (2)

This shows that:
Lexical similarity is not enough

Structure is required

What kind of structures do we need?

How to carry out structural similarity?



Information Retrieval Techniques



Indexing Unstructured Text
Which plays of Shakespeare contain the words 
Brutus AND Caesar but NOT Calpurnia?

One could grep all of Shakespeare’s plays for 
Brutus and Caesar, then strip out lines 
containing Calpurnia?

Slow (for large corpora)
NOT Calpurnia is non-trivial
Other operations (e.g., find the word Romans near
countrymen) not feasible
Ranked retrieval (best documents to return)



Term-document incidence

1 if play contains word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Brutus AND Caesar but NOT
Calpurnia



Incidence vectors

So we have a 0/1 vector for each term.
To answer query: take the vectors for Brutus, 
Caesar and Calpurnia (complemented) ⇒
bitwise AND.
110100 AND 110111 AND 101111 = 100100. 



Term-document incidence

1 if play contains word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Brutus AND Caesar but NOT
Calpurnia

1 0 0 1 0 0

Brutus, Caesar and 
not Calpurnia



Inverted index

For each term T, we must store a list of all 
documents that contain T.
Do we use an array or a list for this?

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

What happens if the word Caesar is added to 
document 14? 



Inverted index

Linked lists generally preferred to arrays
Dynamic space allocation
Insertion of terms into documents easy
Space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings lists

Sorted by docID (more later on why).

Posting



Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen

Linguistic modules

Modified tokens. friend roman countryman

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

...



Indexer steps

n Sequence of (Modified token, Document ID) 
pairs.

I did enact Julius
Caesar I was killed 

i' the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2



Sort by terms.

Core indexing step.



Indexer	steps:	Dictionary	&	Postings

Multiple	term	
entries	in	a	single	
document	are	
merged.
Split	into	Dictionary	
and	Postings
Doc.	frequency	
information	is	
added.

Why frequency?

Will discuss later.



Where	do	we	pay	in	storage?

Pointers

Terms and 
counts

Sec. 1.2

Lists of 
docIDs



Query processing: AND

Consider processing the query:
Brutus AND Caesar
Locate Brutus in the Dictionary;

Retrieve its postings.

Locate Caesar in the Dictionary;
Retrieve its postings.

“Merge” the two postings:

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar



34

1282 4 8 16 32 64

1 2 3 5 8 13 21

The merge

Walk through the two postings simultaneously, in 
time linear in the total number of postings entries

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar2 8

If the list lengths are x and y, the merge takes O(x+y)

operations.

Crucial: postings sorted by docID.



Boolean queries: Exact match

The Boolean Retrieval model is being able to ask a 
query that is a Boolean expression:

Boolean Queries are queries using AND, OR and NOT to 
join query terms

Views each document as a set of words
Is precise: document matches condition or not.

Primary commercial retrieval tool for 3 decades. 
Professional searchers (e.g., lawyers) still like 
Boolean queries:

You know exactly what you’re getting.



Evidence	accumulation

1	vs.	0	occurrence	of	a	search	term
2	vs.	1	occurrence
3	vs.	2	occurrences,	etc.
Usually	more	seems	better

Need	term	frequency	information	in	docs



Ranking	search	results

Boolean	queries	give	inclusion	or	exclusion	of	docs.

Often	we	want	to	rank/group	results
Need	to	measure	proximity	from	query	to	each	doc.
Need	to	decide	whether	docs	presented	to	user	are	
singletons,	or	a	group	of	docs	covering	various	aspects	of	
the	query.



IR	vs.	databases:
Structured	vs	unstructured	data
Structured	data	tends	to	refer	to	information	in	“tables”

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match

(for text) queries, e.g.,

Salary < 60000 AND Manager = Smith.



Unstructured	data

Typically	refers	to	free-form	text

Allows
Keyword	queries	including	operators
More	sophisticated	“concept” queries,	e.g.,

find	all	web	pages	dealing	with	drug	abuse

Classic	model	for	searching	text	documents



Semi-structured	data

In	fact	almost	no	data	is	“unstructured”

E.g.,	this	slide	has	distinctly	identified	zones	such	as	
the	Title and	Bullets

Facilitates	“semi-structured” search	such	as
Title contains	data AND	Bullets contain	search

…	to	say	nothing	of	linguistic	structure



From	Binary	term-document	incidence	
matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}|V|

•Sec. 6.2



To	term-document	count	matrices

Consider	the	number	of	occurrences	of	a	term	in	a	
document:	

Each	document	is	a	count	vector	in	ℕv:	a	column	below	

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

•Sec. 6.2



Bag	of	words	model

Vector	representation	doesn’t	consider	the	ordering	
of	words	in	a	document
John	is	quicker	than	Mary and	Mary	is	quicker	than	
John have	the	same	vectors
This	is	called	the	bag	of	words model.
In	a	sense,	this	is	a	step	back:	The	positional	index	was	
able	to	distinguish	these	two	documents.



Term	frequency	tf

The	term	frequency	tft,d of	term	t in	document	d is	
defined	as	the	number	of	times	that	t	occurs	in	d.
We	want	to	use	tf when	computing	query-document	
match	scores.	But	how?
Raw	term	frequency	is	not	what	we	want:

A	document	with	10	occurrences	of	the	term	is	more	
relevant	than	a	document	with	1	occurrence	of	the	term.

But	not	10	times	more	relevant.

Relevance	does	not	increase	proportionally	with	term	
frequency.

NB: frequency = count in IR



Log-frequency	weighting

The	log	frequency	weight	of	term	t	in	d	is

0	→	0,	1	→	1,	2	→	1.3,	10	→	2,	1000	→	4,	etc.

Score	for	a	document-query	pair:	sum	over	terms	t in	
both	q and	d:

score

The	score	is	0	if	none	of	the	query	terms	is	present	in	
the	document.

î
í
ì >+

=
otherwise 0,

0   tfif, tflog  1
  10 t,dt,d

t,dw

å ÇÎ
+=

dqt dt ) tflog  (1 ,

•Sec. 6.2



Document	frequency

Rare	terms	are	more	informative	than	frequent	terms
Recall	stop	words

Consider	a	term	in	the	query	that	is	rare	in	the	collection	
(e.g.,	arachnocentric)

A	document	containing	this	term	is	very	likely	to	be	relevant	
to	the	query	arachnocentric

→	We	want	a	high	weight	for	rare	terms	like	
arachnocentric.

•Sec. 6.2.1



idf	weight

dft is	the	document	frequency	of	t:	the	number	of	
documents	that	contain	t

dft is	an	inverse	measure	of	the	informativeness of	t
dft £ N

We	define	the	idf (inverse	document	frequency)	of	t
by

We	use	log	(N/dft)	instead	of	N/dft to	“dampen” the	effect	
of	idf.

)/df( log  idf 10 tt N=

Will turn out the base of the log is immaterial.

•Sec. 6.2.1



tf-idf	weighting

The	tf-idf weight	of	a	term	is	the	product	of	its	tf weight	
and	its	idf weight.

Best	known	weighting	scheme	in	information	retrieval
Note:	the	“-” in	tf-idf is	a	hyphen,	not	a	minus	sign!
Alternative	names:	tf.idf,	tf x	idf

Increases	with	the	number	of	occurrences	within	a	
document
Increases	with	the	rarity	of	the	term	in	the	collection

)df/(log)tf1log(w 10,, tdt N
dt

´+=

•Sec. 6.2.2



Score	for	a	document	given	a	query

There	are	many	variants
How	“tf” is	computed	(with/without	logs)
Whether	the	terms	in	the	query	are	also	weighted
…	

Score(q,d) = tf × idft,dt∈q∩d∑

•Sec. 6.2.2



Binary	→	count	→	weight	matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued 
vector of tf-idf weights ∈ R|V|

•Sec. 6.3



Documents	as	vectors

So	we	have	a	|V|-dimensional	vector	space

Terms	are	axes	of	the	space

Documents	are	points	or	vectors	in	this	space

Very	high-dimensional:	tens	of	millions	of	dimensions	
when	you	apply	this	to	a	web	search	engine

These	are	very	sparse	vectors	- most	entries	are	zero.

•Sec. 6.3



Queries	as	vectors

Key	idea	1: Do	the	same	for	queries:	represent	them	
as	vectors	in	the	space
Key	idea	2: Rank	documents	according	to	their	
proximity	to	the	query	in	this	space

proximity	=	similarity	of	vectors
proximity	≈	inverse	of	distance
rank	more	relevant	documents	higher	than	less	relevant	
documents

•Sec. 6.3



Formalizing	vector	space	proximity

First	cut:	distance	between	two	points
(	=	distance	between	the	end	points	of	the	two	vectors)

Euclidean	distance?

Euclidean	distance	is	a	bad	idea	.	.	.

.	.	.	because	Euclidean	distance	is	large	for	vectors	of	
different	lengths.

•Sec. 6.3



Why	distance	is	a	bad	idea
The	Euclidean	distance	
between	q
and	d2 is	large	even	
though	the
distribution	of	terms	in	
the	query	q and	the	
distribution	of
terms	in	the	document	
d2 are
very	similar.

•Sec. 6.3



Use	angle	instead	of	distance

Thought	experiment:	take	a	document	d and	append	
it	to	itself.	Call	this	document	dʹ.
“Semantically” d	and	dʹ	have	the	same	content
The	Euclidean	distance	between	the	two	documents	
can	be	quite	large
The	angle	between	the	two	documents	is	0,	
corresponding	to	maximal	similarity.

Key	idea:	Rank	documents	according	to	angle	with	
query.

•Sec. 6.3



From	angles	to	cosines

The	following	two	notions	are	equivalent.
Rank	documents	in	decreasing order	of	the	angle	between	
query	and	document
Rank	documents	in	increasing order		of	cosine	
(query,document)

Cosine	is	a	monotonically	decreasing	function	for	the	
interval	[0o,	180o]

•Sec. 6.3



Length	normalization

A	vector	can	be	(length-)	normalized	by	dividing	each	
of	its	components	by	its	length	– for	this	we	use	the	L2
norm:

Dividing	a	vector	by	its	L2 norm	makes	it	a	unit	(length)	
vector	(on	surface	of	unit	hypersphere)
Effect	on	the	two	documents	d	and	dʹ	(d	appended	to	
itself)	from	earlier	slide:	they	have	identical	vectors	
after	length-normalization.

Long	and	short	documents	now	have	comparable	weights

å=
i i
xx 2

2

!

•Sec. 6.3



cosine(query,document)
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Dot product

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

•Sec. 6.3



Cosine	for	length-normalized	vectors

For	length-normalized	vectors,	cosine	similarity	is	
simply	the	dot	product	(or	scalar	product):

for	q,	d	length-normalized.

•48
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Cosine	similarity	illustrated



Performance Evaluation



Measures	for	a	search	engine

We	can	quantify	speed/size

Quality	of	the	retrieved	documents

Relevance	measurement	requires	3	elements:
1. A	benchmark	document	collection
2. A	benchmark	suite	of	queries
3. A	usually	binary	assessment	of	either	Relevant or	Non	

relevant for	each	query	and	each	document
Some	work	on	more-than-binary,	but	not	the	standard

•Sec. 8.6



•52

Evaluating	an	IR	system

Note:	the	information	need is	translated	into	a	query
Relevance	is	assessed	relative	to	the	information	
need not	the query
E.g.,	Information	need:	I'm	looking	for	information	on	
whether	drinking	red	wine	is	more	effective	at	
reducing	your	risk	of	heart	attacks	than	white	wine.
Query:	wine	red	white	heart	attack	effective
Evaluate	whether	the	doc	addresses	the	information	
need,	not	whether	it	has	these	words

•Sec. 8.1
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Standard	relevance	benchmarks

TREC	- National	Institute	of	Standards	and	Technology	
(NIST)	has	run	a	large	IR	test	bed	for	many	years

Reuters	and	other	benchmark	doc	collections	used

“Retrieval	tasks” specified
sometimes	as	queries

Human	experts	mark,	for	each	query	and	for	each	doc,	
Relevant or	Nonrelevant

or	at	least	for	subset	of	docs	that	some	system	returned	for	
that	query

•Sec. 8.2
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Unranked	retrieval	evaluation:
Precision	and	Recall
Precision:	fraction	of	retrieved	docs	that	are	relevant	
=	P(relevant|retrieved)
Recall:	fraction	of	relevant	docs	that	are	retrieved
=	P(retrieved|relevant)

Precision	P	=	tp/(tp +	fp)
Recall		 R	=	tp/(tp +	fn)

Relevant Nonrelevant

Retrieved tp fp
Not Retrieved fn tn

•Sec. 8.3
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Should	we	instead	use	the	accuracy	
measure	for	evaluation?

Given	a	query,	an	engine	classifies	each	doc	as	
“Relevant” or	“Nonrelevant”

The	accuracy	of	an	engine:	the	fraction	of	these	
classifications	that	are	correct

(tp +	tn)	/	(	tp +	fp +	fn +	tn)

Accuracy is	a	evaluation	measure	in	often	used	in	
machine	learning	classification	work

Why	is	this	not	a	very	useful	evaluation	measure	in	IR?

•Sec. 8.3



Performance Measurements

Given a set of document T
Precision = # Correct Retrieved Document / # Retrieved Documents
Recall = # Correct Retrieved Document/ # Correct Documents

Correct 
Documents

Retrieved 
Documents 

(by the system)

Correct 
Retrieved 

Documents
(by the system)



•57

Why	not	just	use	accuracy?

How	to	build	a	99.9999%	accurate	search	engine	on	a	
low	budget….

People	doing	information	retrieval	want	to	find
something and	have	a	certain	tolerance	for	junk.

Search for: 

0 matching results found.

•Sec. 8.3
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Precision/Recall	trade-off

You	can	get	high	recall	(but	low	precision)	by	retrieving	
all	docs	for	all	queries!

Recall	is	a	non-decreasing	function	of	the	number	of	
docs	retrieved

In	a	good	system,	precision	decreases	as	either	the	
number	of	docs	retrieved	or	recall	increases

This	is	not	a	theorem,	but	a	result	with	strong	empirical	
confirmation

•Sec. 8.3
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A	combined	measure:	F

Combined	measure	that	assesses	precision/recall	
tradeoff	is	F	measure (weighted	harmonic	mean):

People	usually	use	balanced	F1measure
i.e.,	with	b =	1	or	a =	½

Harmonic	mean	is	a	conservative	average
See	CJ	van	Rijsbergen,	Information	Retrieval

RP
PR

RP

F
+

+
=

-+
= 2

2 )1(
1)1(1

1
b
b

aa

•Sec. 8.3
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Evaluating	ranked	results

Evaluation	of	ranked	results:
The	system	can	return	any	number	of	results
By	taking	various	numbers	of	the	top	returned	documents	
(levels	of	recall),	the	evaluator	can	produce	a	precision-
recall	curve

•Sec. 8.4
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A	precision-recall	curve

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Recall
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•Sec. 8.4
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Averaging	over	queries

A	precision-recall	graph	for	one	query	isn’t	a	very	
sensible	thing	to	look	at

You	need	to	average	performance	over	a	whole	bunch	
of	queries.

But	there’s	a	technical	issue:	
Precision-recall	calculations	place	some	points	on	the	graph
How	do	you	determine	a	value	(interpolate)	between	the	
points?

•Sec. 8.4
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Evaluation

Graphs	are	good,	but	people	want	summary	measures!
Precision	at	fixed	retrieval	level

Precision-at-k:	Precision	of	top	k results
Perhaps	appropriate	for	most	of	web	search:	all	people	want	are	
good	matches	on	the	first	one	or	two	results	pages
But:	averages	badly	and	has	an	arbitrary	parameter	of	k

11-point	interpolated	average	precision
The	standard	measure	in	the	early	TREC	competitions:	you	take	
the	precision	at	11	levels	of	recall	varying	from	0	to	1	by	tenths	
of	the	documents,	using	interpolation	(the	value	for	0	is	always	
interpolated!),	and	average	them
Evaluates	performance	at	all	recall	levels

•Sec. 8.4
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Typical	(good)	11	point	precisions

SabIR/Cornell	8A1	11pt	precision	from	TREC	8	(1999)	

0
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•Sec. 8.4
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Yet	more	evaluation	measures…

Mean	average	precision	(MAP)
Average	of	the	precision	value	obtained	for	the	top	k
documents,	each	time	a	relevant	doc	is	retrieved
Avoids	interpolation,	use	of	fixed	recall	levels
MAP	for	query	collection	is	arithmetic	ave.

Macro-averaging:	each	query	counts	equally

R-precision
If	we	have	a	known	(though	perhaps	incomplete)	set	of	
relevant	documents	of	size	Rel,	then	calculate	precision	of	
the	top	Rel docs	returned
Perfect	system	could	score	1.0.

•Sec. 8.4
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TREC
TREC	Ad	Hoc	task	from	first	8	TRECs	is	standard	IR	task

50	detailed	information	needs	a	year
Human	evaluation	of	pooled	results	returned
More	recently	other	related	things:	Web	track,	HARD

A	TREC	query	(TREC	5)
<top>
<num>	Number:		225
<desc>	Description:
What	is	the	main	function	of	the	Federal	Emergency	
Management	Agency	(FEMA)	and	the	funding	level	provided	
to	meet	emergencies?		Also,	what	resources	are	available	to	
FEMA	such	as	people,	equipment,	facilities?

</top>

•Sec. 8.2



Standard	relevance	benchmarks:	Others

GOV2
Another	TREC/NIST	collection
25	million	web	pages
Largest	collection	that	is	easily	available
But	still	3	orders	of	magnitude	smaller	than	what	
Google/Yahoo/MSN	index

NTCIR
East	Asian	language	and	cross-language	information	
retrieval

Cross	Language	Evaluation	Forum	(CLEF)
This	evaluation	series	has	concentrated	on	European	
languages	and	cross-language	information	retrieval.

Many	others
•67

•Sec. 8.2



Text Categorization



Text Classification Problem
Given:

a set of target categories:
the set T of documents, 

define
f : T  ® 2C

VSM (Salton89’)
Features are dimensions of a Vector Space.
Documents and Categories are vectors of feature 
weights.
d is assigned to      if   

€ 

 

d ⋅
 
C 

i
> th

C = C1,..,Cn{ }

i
C



The Vector Space Model

Berlusconi

Bush

Totti

Bush declares 
war.
Berlusconi 
gives support       

Totti scored in 
the yesterday 
match against 
Berlusconi’s 
Milan

Berlusconi 
acquires 
Inzaghi 
before 
elections

d1: Politic

d1

d2

d3

C1

C1 : Politics
Category

d2: Sport d3:Economic

C2

C2 : Sport
Category



Automated Text Categorization

A corpus of pre-categorized documents
Split document in two parts:

Training-set
Test-set

Apply a supervised machine learning model to the 
training-set

Positive examples
Negative examples

Measure the performances on the test-set
e.g., Precision and Recall



Feature Vectors

Each example is associated with a vector of n feature 
types (e.g. unique words in TC)

The dot product          counts the number of features in 
common

This provides a sort of similarity
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Text Categorization phases

Corpus pre-processing (e.g. tokenization, stemming)
Feature Selection (optionally) 

Document Frequency, Information Gain, c2 , mutual 
information,...

Feature weighting 
for documents and profiles

Similarity measure 
between document and profile (e.g. scalar product)

Statistical Inference
threshold application

Performance Evaluation
Accuracy, Precision/Recall, BEP, f-measure,..



Feature Selection

Some words, i.e. features, may be irrelevant
For example, “function words” as: “the”, “on”,”those”…

Two benefits:
efficiency
Sometime the accuracy

Sort features by relevance and select the m-best



Statistical Quantity to sort feature

Based on corpus counts of the pair 
<feature,category>



Statistical Selectors

Chi-square, Pointwise MI and MI

€ 

( f ,C)



, the weight of f  in d 
Several weighting schemes (e.g. TF * IDF, Salton 91’)

, the profile weights of f  in Ci:

, the training documents in 

Profile Weighting:
the Rocchio’s formula
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Similarity estimation

Given the document and the category representation

It can be defined the following similarity function (cosine 
measure

d is assigned to       ifi
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Clustering	
•Sec. 7.1.6



Experiments

Reuters Collection 21578 Apté split (Apté94)
90 classes (12,902 docs)
A fixed splitting between training and test set
9603 vs 3299 documents

Tokens
about 30,000 different

Other different versions have been used but …
most of TC results relate to the 21578 Apté

[Joachims 1998], [Lam and Ho 1998], [Dumais et al. 1998],         
[Li Yamanishi 1999], [Weiss et al. 1999], 
[Cohen and Singer 1999]…



A Reuters document- Acquisition Category

CRA SOLD FORREST GOLD FOR 76 MLN DLRS - WHIM CREEK

SYDNEY, April 8 - <Whim Creek Consolidated NL> said the
consortium it is leading will pay 76.55 mln dlrs for the
acquisition of CRA Ltd's <CRAA.S> <Forrest Gold Pty Ltd> unit,
reported yesterday.

CRA and Whim Creek did not disclose the price yesterday.
Whim Creek will hold 44 pct of the consortium, while

<Austwhim Resources NL> will hold 27 pct and <Croesus Mining
NL> 29 pct, it said in a statement.

As reported, Forrest Gold owns two mines in Western
Australia producing a combined 37,000 ounces of gold a year. It
also owns an undeveloped gold project.



A Reuters document- Crude-Oil Category

FTC URGES VETO OF GEORGIA GASOLINE STATION BILL

WASHINGTON, March 20 - The Federal Trade Commission said
its staff has urged the governor of Georgia to veto a bill that
would prohibit petroleum refiners from owning and operating
retail gasoline stations.

The proposed legislation is aimed at preventing large oil
refiners and marketers from using predatory or monopolistic
practices against franchised dealers.

But the FTC said fears of refiner-owned stations as part of
a scheme of predatory or monopolistic practices are unfounded.
It called the bill anticompetitive and warned that it would
force higher gasoline prices for Georgia motorists.



Performance Measurements

Given a set of document T
Precision = # Correct Retrieved Document / # Retrieved Documents
Recall = # Correct Retrieved Document/ # Correct Documents

Correct 
Documents

Retrieved 
Documents 

(by the system)

Correct 
Retrieved 

Documents
(by the system)



Precision and Recall of Ci

a, corrects
b, mistakes
c, not retrieved



Performance Measurements (cont’d)

Breakeven Point
Find thresholds for which

Recall = Precision
Interpolation

f-measure
Harmonic mean between precision and recall

Global performance on more than two categories
Micro-average 

The counts refer to classifiers
Macro-average (average measures over all categories)



F-measure e MicroAverages



The Impact of r parameter on 
Acquisition category
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The impact of r parameter on Trade 
category

0,65
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N-fold cross validation

Divide training set in n parts
One is used for testing

n-1 for training

This can be repeated n times for n distinct test sets

Average and Std. Dev. are the final performance index



Introduction to Machine Learning



What is Statistical Learning?

Statistical Methods – Algorithms that learn 
relations in the data from examples
Simple relations are expressed by pairs of 
variables: áx1,y1ñ, áx2,y2ñ,…, áxn,ynñ

Learning f such that evaluate y* given a new value 
x*, i.e. áx*, f(x*)ñ = áx*, y*ñ



You have already tackled the learning 
problem

Y

X



Linear Regression

Y

X



Degree 2

Y

X



Degree 

Y

X



Machine Learning Problems

Overfitting
How dealing with millions of variables instead of 
only two?
How dealing with real world objects instead of 
real values?



Linear Classifiers



Linear Classifier (1)
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The equation of a hyperplane is

is the vector representing the classifying example
is the gradient to the hyperplane

The classification function is
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Linear classifiers (2)

Linear Functions are the simplest ones from an 
analytical point of view.
The basic idea is to select a hypothesis with null 
error on the training-set.
To learn a linear function a simple neural network 
of only one neuron is enough (Perceptron)



An animal neuron



The Perceptron
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Useful Concepts

Functional Margin of an example with respect to a 
hyperplane:
The distribution of functional margins of a 
hyperplane with respect to a training set S is the 
distribution of the margins of the examples in S wrt 
the hyperplane . 

The functional margin of a hyperplane is the 
minimum margin of the distribution

)( bxwy iii +⋅=


γ

),( bw




Notations (con’td)

If we normalize the hyperplane equation, i.e.

,  we obtain the geometric margin

The geometric margin measure the Euclidean distance 
between the target point and the hyperplane.
The training set Margin is the maximum geometric 
(functional) margin among all hyperplanes which 
separates the examples in S.
The hyperplane associated with the above quantity is 
called maximal margin hyperplane
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Basic Concepts
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Geometric Margin



Geometric Margin                          Hyperplane Margin
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Maximal margin vs other margins



Perceptron training on a data set
(on-line algorthm)
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Novikoff’s Theorem

Let S be a non-trivial training-set and let

Let us suppose there is a vector  and

with g > 0. Then the maximum number of errors of the perceptron 
is:
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Observations

The theorem states that independently of the margin size, if 
data is linearly separable the perceptron algorithm finds the 
solution in a finite amount of steps.
This number is inversely proportional to the square of the 
margin.
The bound is invariant with respect to the scale of the 
patterns (i.e. only the relative distances count).
The learning rate is not essential for the convergence.



Dual Representation
The decision function can be rewritten as:

as well as the updating function 

The learning rate      only affects the re-scaling of the hyperplane, 
it does not affect the algorithm, so we can fix 1.η =

η
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DUALITY is the first feature of Support Vector Machines
SVMs are learning machines using the following function:

Note that data appears only as scalar product (for both testing 
and learning phases)
The Matrix                        is called Gram matrix

First properties of SVMs

f (x) = sgn(

w ⋅

x + b) = sgn( α j

j=1..m

∑ yj

x j ⋅

x + b)
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Data must be linearly separable
Noise (almost all classifier types)

Data must be in vectorial format

Limits of Linear Classifiers



Multi-Layers Neural Network: back-propagation learning 
algorithm.
SVMs: kernel methods.
The learning algorithm is decoupled by the application 
domain which is encoded by a kernel function

Solutions



Support Vector Machines



Which hyperplane choose?



Classifier with a Maximum Margin

Var1

Var2

Margin

Margin

IDEA 1: Select the 
hyperplane with 
maximum margin



Support Vector

Var1

Var2

Margin

Support Vectors



Support Vector Machine Classifiers
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Support Vector Machines
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Support Vector Machines
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Final Formulation
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Optimization Problem

Optimal Hyperplane:

Minimize

Subject to

The dual problem is simpler
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Soft Margin SVMs
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slack variables are 
added
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but they should penalize 
the objective function
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Soft Margin SVMs
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The new constraints are

The objective function 
penalizes the incorrect 
classified examples

C is the trade-off 
between margin and the 
error
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Dual formulation

By deriving wrt
  

€ 

 
w ,
 
ξ  and b

44 Chapter 2. Statistical Machine Learning

=100mm softmargvshard.eps

Figure 2.15: Soft Margin vs. Hard Margin hyperplanes.

primal Lagrangian:

L(w⃗, b, ξ⃗, α⃗) =
1

2
w⃗ · w⃗ +

C

2

m
∑

i=1

ξ2
i −

m
∑

i=1

αi[yi(w⃗ · x⃗i + b)− 1 + ξi], (2.22)

where αi are Lagrangian multipliers.

The dual problem is obtained by imposing stationarity on the derivatives

respect to w⃗, ξ⃗ and b:

∂L(w⃗, b, ξ⃗, α⃗)
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By substituting the above relations into the primal, we obtain the following

dual objective function:
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(2.24)

where δij = 1 if i = j and 0 otherwise (Kronecker’s delta). The objective

function is subject to the usual constraints:

{

αi ≥ 0, ∀i = 1, ..,m
∑m

i=1 yiαi = 0
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of errors should be the lowest possible. This trade-off between the separability

with highest margin and the number of errors can be specified by (a) intro-

ducing slack variables ξi in the inequality constraints of Problem 2.13 and (b)

adding the minimization the number of errors in the objective function. The

resulting optimization problem is

⎧

⎪

⎨

⎪

⎩

min 1
2 ||w⃗|| + C

∑m
i=1 ξ2

i

yi(w⃗ · x⃗i + b) ≥ 1 − ξi, ∀i = 1, ..,m

ξi ≥ 0, i = 1, ..,m

(2.21)
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yk(w⃗ · (x⃗i − x⃗j) + b) ≥ 1 − ξk, ∀i, j = 1, ..,m

ξk ≥ 0, k = 1, ..,m2

(2.22)

yk = 1 if rank(x⃗i) > rank(x⃗j), 0 otherwise, where k = i × m + j

whose the main characteristics are:

- The constraint yi(w⃗ · x⃗i + b) ≥ 1 − ξi allows the point x⃗i to violate the

hard constraint of Problem 2.13 of a quantity equal to ξi. This is clearly

shown by the outliers in Figure 2.14, e.g. x⃗i.

- If a point is misclassified by the hyperplane then the slack variable as-

sumes a value larger than 1. For example, Figure 2.14 shows the mis-

classified point xi and its associated slack variable ξi which is necessar-

ily > 1. Thus,
∑m

i=1 ξi is an upperbound to the number of errors. The

same property is held by the quantity,
∑m

i=1 ξ2
i , which can be used as an

alternative bound.

- The constant C tunes the trade-off between the classification errors and

the margin. The higher C is, the lower number of errors the optimal

solution commits. For C → ∞, Problem 2.22 approximates Problem

2.13.

- Similarly to the hard margin error probability upperbound, it can be

proven that minimizing ||w⃗|| + C
∑m

i=1 ξ2
i minimizes the error proba-

bility of classifiers which are not perfectly consistent with the training

data, e.g. they do not necessarily classify correctly all the training data.



Final dual optimization problem



Soft Margin Support Vector Machines

The algorithm tries to keep xi low and maximize the margin

NB: The number of error is not directly minimized (NP-complete 
problem); the distances from the hyperplane are minimized

If C®¥, the solution tends to the one of the hard-margin algorithm

Attention !!!: if C = 0 we get          = 0, since 

If C increases the number of error decreases. When C tends to 
infinite the number of errors must be 0, i.e. the hard-margin 
formulation

|||| w


  

€ 

min
1

2
||
 
w ||

2
+C ξ

i
i

∑
  

€ 

yi(
 
w ⋅
 
x i + b) ≥1−ξ i   ∀

 
x i

ξ i ≥ 0

  

€ 

yib ≥1−ξ i   ∀
 
x i



Robusteness of Soft vs. Hard Margin SVMs
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Soft vs Hard Margin SVMs

Soft-Margin has ever a solution

Soft-Margin is more robust to odd examples

Hard-Margin does not require parameters



Parameters

C: trade-off parameter

J: cost factor
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Kernel Methods



An example of kernel-based machine:
Perceptron training

w0 ←

0;b0 ← 0;k← 0;R←max1≤i≤l || xi ||

do
       for i =  1 to 
         if yi (

wk ⋅
xi + bk ) ≤ 0 then

                  wk+1 =
wk +ηyi

xi
                  bk+1 = bk +ηyiR

2

                 k = k +1
        endif
      endfor
while an error is found
return k, ( wk, bk) 



Graphic interpretation of the Perceptron
476 A. Moschitti
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Fig. 10. Perceptron algorithm process

Since the sign of the contribution xi is given by yi, αi is positive and is proportional
(through the η factor) to the number of times that xi is incorrectly classified. Difficult
points that cause many mistakes will be associated with large αi.

It is interesting to note that, if we fix the training set S, we can use the αi as alter-
native coordinates of a dual space to represent the target hypothesis associated with w.
The resulting decision function is the following:

h(x) = sgn(w · x + b) = sgn

(( m∑

i=1

αiyixi

)
· x + b

)
=

= sgn

(
m∑

i=1

αiyi(xi · x) + b

)
(11)

Given the dual representation, we can adopt a learning algorithm that works in the
dual space described in Table 3.

Note that as the Novikoff’s theorem states that the learning rate η only changes the
scaling of the hyperplanes, it does not affect the algorithm thus we can set η = 1.
On the contrary, if the perceptron algorithm starts with a different initialization, it will
find a different separating hyperplane. The reader may wonder if such hyperplanes are
all equivalent in terms of the classification accuracy of the test set; the answer is no:
different hyperplanes may lead to different error probabilities. In particular, the next



In each step of perceptron algorithm only training data is 
added with a certain weight:

Hence the classification function results:

Note that data only appears in the scalar product

Dual Representation for Classification
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Dual Representation for Learning

as well as the updating function 

The learning rate      only affects the re-scaling of the 
hyperplane, it does not affect the algorithm, so we can fix
η =1

η

if yi α j
j=1..
∑ yj
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Mapping vectors in a space where they are linearly 
separable, 
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Soft Margin optimization problem

48 Chapter 2. Statistical Machine Learning

respect to ~w, ~⇠ and b:

@L(~w, b, ~⇠, ~↵)
@ ~w

= ~w �
mX

i=1

yi↵i~xi = ~0 ) ~w =
mX

i=1

yi↵i~xi

@L(~w, b, ~⇠, ~↵)
@~⇠

= C~⇠ � ~↵ = ~0

@L(~w, b, ~⇠, ~↵)
@b

=
mX

i=1

yi↵i = 0

(2.23)

By substituting the above relations into the primal, we obtain the following
dual objective function:

w(~↵) =
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
1

2C
~↵ · ~↵� 1

C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
1

2C
~↵ · ~↵ =

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j

�
~xi · ~xj +

1
C

�ij

�
,

(2.24)
where �ij = 1 if i = j and 0 otherwise (Kronecker’s delta). The objective

function is subject to the usual constraints:
(

↵i � 0, 8i = 1, ..,m
P

m

i=1 yi↵i = 0

The above dual can be used to find a solution of Problem 2.21, which ex-
tends the applicability of linear functions to classification problems not com-
pletely linearly separable. The separability property relates not only on the
available class of hypotheses, e.g. linear vs. polynomial functions, but it
strictly depends on the adopted features. Their roles is to provide a map be-
tween the example data and vectors in Rn. Given such mapping, the scalar
product provides a measure of the similarity between pairs of examples or, ac-
cording to a colder interpretation, it provides a partitioning function based on
such features.

The next Section shows that, it is possible to substitute the scalar product
of two feature vectors with a function between the data examples directly. This
allows us to avoid the explicit feature design and consequently enables us to
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@L(~w, b, ~↵)
@b

=
mX

i=1

yi↵i = 0 (2.19)

Finally, by substituting Eq. 2.18 and 2.19 into the primal Lagrangian we
obtain

L(~w, b, ~↵) =
1
2

~w · ~w �
mX

i=1

↵i[yi(~w · ~xi + b)� 1] =

=
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj �
mX

i,j=1

yiyj↵i↵j ~xi · ~xj +
mX

i=1

↵i

=
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

(2.20)
which according to the Definition 2.24 is the optimization function of the dual
problem subject to ↵i � 0. In summary, the final dual optimization problem is
the following:

maximize
mX

i=1

↵i �
1
2

mX

i,j=1

yiyj↵i↵j ~xi · ~xj

subject to ↵i � 0, i = 1, ..,m
mX

i=1

yi↵i = 0

where ~w =
P

m

i=1 yi↵i~xi and the
P

m

i=1 yi↵i = 0 are the relation derived from
Eq. 2.18 and 2.19. Other conditions establishing interesting properties can be
derived by the Khun-Tucker theorem. This provides the following relations for
an optimal solution:

@L(~w⇤, ~↵⇤, ~�⇤)
@ ~w

= ~0

@L(~w⇤, ~↵⇤, ~�⇤)
@~�

= ~0

↵⇤
i gi(~w⇤) = 0, i = 1, ..,m
gi(~w⇤)  0, i = 1, ..,m

↵⇤
i � 0, i = 1, ..,m



Kernels in Support Vector Machines 

In Soft Margin SVMs we maximize:

By using kernel functions we rewrite the problem as:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maximize
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαj

(
k(oi, oj) +

1
C

δij

)

αi ≥ 0, ∀i = 1, .., m
m∑

i=1

yiαi = 0

Moreover, Eq. 10 for the Perceptron appears also in the Soft Margin SVMs (see
conditions 24), hence we can rewrite the SVM classification function as in Eq. 11 and
use a kernel inside it, i.e.:

h(x) = sgn

(
m∑

i=1

αiyik(oi, oj) + b

)

The data object o is mapped in the vector space trough a feature extraction procedure
φ : o → (x1, ..., xn) = x, more in general, we can map a vector x from one feature
space into another one:

x = (x1, ..., xn) → φ(x) = (φ1(x), ..., φn(x))

This leads to the general definition of kernel functions:

Definition 10. A kernel is a function k, such that ∀ x,z ∈ X

k(x, z) = φ(x) · φ(z)

where φ is a mapping from X to an (inner product) feature space.

Note that, once we have defined a kernel function that is effective for a given learning
problem, we do not need to find which mapping φ corresponds to. It is enough to know
that such mapping exists. The following proposition states the conditions that guarantee
such existence.

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x, z) be a symmetric function on X. Then

K(x, z) is a kernel function if and only if the matrix

k(x, z) = φ(x) · φ(z)

is positive semi-definite (has non-negative eigenvalues).

Proof. Let us consider a symmetric function on a finite space X = {x1, x2, ..., xn}

K =
(
K(xi, xj)

)n
i,j=1

Since K is symmetric there is an orthogonal matrix V such that K = V ΛV ′

where Λ is a diagonal matrix containing the eigenvalues λt of K, with corresponding
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Fig. 15. Soft Margin vs. Hard Margin hyperplanes

where αi are Lagrangian multipliers.
The dual problem is obtained by imposing stationarity on the derivatives respect to

w, ξ and b:

∂L(w, b, ξ, α)
∂w

= w −
m∑

i=1

yiαixi = 0 ⇒ w =
m∑

i=1

yiαixi

∂L(w, b, ξ, α)
∂ξ

= Cξ − α = 0

∂L(w, b, ξ, α)
∂b

=
m∑

i=1

yiαi = 0

(24)

By substituting the above relations into the primal, we obtain the following dual
objective function:

w(α) =
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαjxi · xj +
1

2C
α · α − 1

C
α · α =

=
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαjxi · xj −
1

2C
α · α =

=
m∑

i=1

αi −
1
2

m∑

i,j=1

yiyjαiαj

(
xi · xj +

1
C

δij

)
,

(25)

where the Kronecker’s delta, δij = 1 if i = j and 0 otherwise. The objective function
above is subject to the usual constraints:

{
αi ≥0, ∀i = 1, .., m∑m

i=1 yiαi = 0

This dual formulation can be used to find a solution of Problem 22, which extends
the applicability of linear functions to classification problems not completely linearly
separable. The separability property relates not only to the available class of hypotheses,
e.g. linear vs. polynomial functions, but it strictly depends on the adopted features. Their



Kernel Function Definition

Kernels are the product of mapping functions such as

  

€ 

 x ∈ ℜn,     
 
φ ( x ) = (φ1(

 x ),φ2( x ),...,φm (  x ))∈ ℜm
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Def. 2.26 A kernel is a function k, such that 8 ~x,~z 2 X

k(~x,~z) = �(~x) · �(~z)

where � is a mapping from X to an (inner product) feature space.

Note that, once we have defined a kernel function that is effective for a
given learning problem, we do not need to find which mapping � it corresponds
to. It is enough to know that such mapping exists. The following proposition
states the conditions that guaranteed such existence.

Proposition 2.27 (Mercer’s conditions)
Let X be a finite input space with K(~x,~z) a symmetric function on X. Then
K(~x, ~z) is a kernel function if and only if the matrix

k(~x,~z) = �(~x) · �(~z)

is positive semi-definite (has non-negative eigenvalues).

The proof of such proposition is the following (from [Cristianini and Shawe-
Taylor, 2000]). Let us consider a symmetric function on a finite space X =
{x1, x2, ..., xn}

K =
�
K(xi, xj)

�n

i,j=1

Since K is symmetric there is an orthogonal matrix V such that K =
V ⇤V 0 where ⇤ is a diagonal matrix containing the eigenvalues �t of K, with
corresponding eigenvectors ~vt = (vti)n

i=1, i.e. the columns of V . Now assume
that all the eigenvalues are non-negatives and consider the feature mapping:

� : ~xi !
�p

�tvti

�n

t=1
2 Rn, i = 1, .., n.

We now have that,

�(~xi) · �(~xj) =
nX

t=1

�tvtivtj = (V ⇤V 0)ij = Kij = K(xi, xj).

This proves that K(~x,~z) is a valid kernel function that corresponds to the
mapping �. Therefore, the only requirement to derive the mapping � is that
the eigenvalues of K are non-negatives since if we had a negative eigenvalue
�s associated with the eigenvector ~vs, the point

~z =
nX

i=1

vsi�(~xi) =
p

⇤V 0~vs.



The Kernel Gram Matrix

The sole information used for training is the kernel Gram 
matrix

If the kernel is valid, K is symmetric positive-semidefinite
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Valid Kernels

VI Appendix B. Basic Geometry and Algebraic Concepts

For example:

(x, x2) =
Z 1

0
xx2dx =

h1

0

x4

4
=

1
4

The four properties required in Def. B.6 follow immediately from the analo-
gous property of the definite integral:

(f + h, g) =
Z 1

0
(f(t) + h(t))g(t)dt =

Z 1

0
f(t)g(t) + h(t)g(t)dt =

=
Z 1

0
f(t)g(t)dt +

Z 1

0
h(t)g(t)dt = (f, g) + (h, g).

Example B.8 The classical scalar product in Rn is the component-wise prod-
uct

(u1, u2, .., un)(v1, v2, .., vn) = (u1v1, u2v2, .., unvn)

We recall that
cos(~u,~v) =

(~u,~v)
||~u||⇥ ||~v||

B.2 Matrixes

Def. B.9 Transposed Matrix
Given a matrix A 2 Rm ⇥ Rn of m rows and n columns, we indicate with
A0 2 Rn ⇥Rm its transposed, i.e. Aij = A0

ji for i = 1, ..,m and j = 1, .., n.

Def. B.10 Diagonal Matrix
Given a matrix A 2 Rm ⇥ Rn, A is a diagonal matrix iff Aij = 0 for i 6= j
i = 1, ..,m and j = 1, .., n.

Def. B.11 Eigen Values
Given a matrix A 2 Rm ⇥ Rn, an egeinvalue � and an egeinvector ~x 2
Rn � {~0} are such that

A~x = �~x

Def. B.12 Symmetric Matrix
A square matrix A 2 Rn⇥Rn is symmetric iff Aij = Aji for i 6= j i = 1, ..,m
and j = 1, .., n, i.e. iff A = A0.
B.2. Matrixes VII

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A 2 Rn ⇥ Rn is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).

Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector ~x 6= 0

~x0A~x > �~x (� 0).

From the previous proposition it follows that: If we find a decomposition
A in M 0M , then A is semi-definite positive matrix as

~x0A~x = ~x0M 0M~x = (M~x)0(M~x) = M~x · M~x = ||M~x||2 � 0.

Theorem B.15 Schur Decomposition, (Real Values)
Every square real matrix A is orthogonally similar to an upper block triangu-
lar matrix D: A = Q0DQ where each block of D is either a 1#1 matrix or
a 2#2 matrix having complex conjugate eigenvalues. D is diagonal iff A is
symmetric.
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Valid Kernels cont’d

If the matrix is positive semi-definite then we can find a 
mapping f implementing the kernel function

32 Alessandro Moschitti

Note that, once we have defined a kernel function that is effective for a given learn-
ing problem, we do not need to find which mapping � corresponds to. It is enough
to know that such mapping exists. The following proposition states the conditions that
guarantee such existence.

Proposition 1. (Mercer’s conditions)

Let X be a finite input space and let K(x,z) be a symmetric function on X. Then

K(x,z) is a kernel function if and only if the matrix

k(x,z) = �(x) · �(z)

is positive semi-definite (has non-negative eigenvalues).

Proof. Let us consider a symmetric function on a finite space X = {x1, x2, ..., xn}

K =
�
K(xi, xj)

�n

i,j=1

Since K is symmetric there is an orthogonal matrix V such that K = V ⇤V 0

where ⇤ is a diagonal matrix containing the eigenvalues �t of K, with corresponding
eigenvectors vt = (vti)n

i=1, i.e., the columns of V . Now assume that all the eigenvalues
are non-negatives and consider the feature mapping:

� : xi !
�p

�tvti

�n

t=1
2 Rn, i = 1, .., n.

It follows that

�(xi) · �(xj) =
nX

t=1

�tvtivtj = (V ⇤V 0)ij = Kij = K(xi, xj).

This proves that K(x,z) is a valid kernel function that corresponds to the mapping
�. Therefore, the only requirement to derive the mapping � is that the eigenvalues
of K are non-negatives since if we had a negative eigenvalue �s associated with the
eigenvector vs, the point

z =
nX

i=1

vsi�(xi) =
p

⇤V 0vs.

in the feature space would have norm squared

||z||2 = z · z = v0
sV
p

⇤
p

⇤V 0vs = v0
sV ⇤V 0vs = v0

sKvs = �s < 0,

which contradicts the geometry of the space [20].

4.2 Polynomial Kernel

The above section has shown that kernel functions can be used to map a vector space in
other spaces in which the target classification problem becomes linearly separable (or
in general easier). Another advantage is the possibility to map the initial feature space
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Is it a valid kernel?

It may not be a kernel so we can use M´∙M

B.2. Matrixes VII

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A 2 Rn ⇥ Rn is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).

Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector ~x 6= 0

~x0A~x > �~x (� 0).

From the previous proposition it follows that: If we find a decomposition
A in M 0M , then A is semi-definite positive matrix as

~x0A~x = ~x0M 0M~x = (M~x)0(M~x) = M~x · M~x = ||M~x||2 � 0.

Theorem B.15 Schur Decomposition, (Real Values)
Every square real matrix A is orthogonally similar to an upper block triangu-
lar matrix D: A = Q0DQ where each block of D is either a 1#1 matrix or
a 2#2 matrix having complex conjugate eigenvalues. D is diagonal iff A is
symmetric.
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Valid Kernel operations

k(x,z) = k1(x,z)+k2(x,z)

k(x,z) = k1(x,z)*k2(x,z)

k(x,z) = a k1(x,z)

k(x,z) = f(x)f(z)

k(x,z) = x'Bz

k(x,z) = k1(f(x),f(z))
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Object Transformation [Moschitti et al, CLJ 2008]

Canonical Mapping, fM() 
object transformation,
e. g., a syntactic parse tree into a verb subcategorization
frame tree.

Feature Extraction, fE()
maps the canonical structure in all its fragments
different fragment spaces, e.g. String and Tree Kernels

                    
),()()(                

))(())(()()(),(
2121

212121

SSKSS
OOOOOOK

EEE

MEME

=⋅=
⋅=⋅=

φφ
φφφφφφ
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Part I – Basic Kernels (for structured data)

Basic Kernels and their Feature Spaces (35 min)
Linear Kernels
Polynomial Kernels
Lexical Semantic Kernels
String and Word Sequence Kernels 
Syntactic Tree Kernel, Partial Tree kernel (PTK), Semantic 
Syntactic Tree Kernel, Smoothed PTK
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Linear Kernel

In Text Categorization documents are word vectors

The dot product            counts the number of features in 
common

This provides a sort of similarity

Φ(dx ) =
x = (0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,1)

                         buy           market        sell          stocks    trade

zx 

⋅

Φ(dz ) =
z = (0,..,1,..,0,..,1,..,0,..,0,..,0,..,1,..,0,..,0,..,1,..,0,..,0)

                         buy   company             sell         stock     
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Feature Conjunction (polynomial kernel)

The initial vectors are mapped in a higher space

More expressive, as            encodes 

Stock+Market vs. Downtown+Market features

We can smartly compute the scalar product as

)1,2,2,2,,(),( 2121
2
2

2
121 xxxxxxxx →><Φ

),()1()1(        
1222        

)1,2,2,2,,()1,2,2,2,,(         
)()(

22
2211

22112121
2
2

2
2

2
1

2
1

2121
2
2

2
12121

2
2

2
1

zxKzxzxzx
zxzxzzxxzxzx

zzzzzzxxxxxx
zx

Poly




=+⋅=++=
=+++++=

=⋅=
=Φ⋅Φ

)( 21xx
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Sub-hierarchies in WordNet
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Similarity based on WordNet
Inverted Path Length:

simIPL(c1, c2) =
1

(1 + d(c1, c2))Æ

Wu & Palmer:

simWUP (c1, c2) =

2 dep(lso(c1, c2))
d(c1, lso(c1, c2)) + d(c2, lso(c1, c2)) + 2 dep(lso(c1, c2))

Resnik:
simRES(c1, c2) = ° log P (lso(c1, c2))

Lin:

simLIN (c1, c2) =
2 log P (lso(c1, c2))

log P (c1) + log P (c2)

Table 1. Measures of semantic similarity.

3.1 Semantic Networks and Similarity

The formal description of semantic kernels requires the introduction of some
definitions. We denote terms as t1, t2, . . . 2 T and concepts as c1, c2, . . . 2 C;
we also sometimes use the somewhat informal disambiguation operator c(·) to
map terms to concept representations. To compute useful notions of semantic
similarity among the input terms, we employ semantic reference structures which
we call, for simplicity, Semantic Networks. These can be seen as directed graphs
semantically linking concepts by means of taxonomic relations (e.g. [cat] is-a
[mammal]). Research in Computational Linguistics has led to a variety of well-
known measures of semantic similarity in semantic networks.

The measures relevant in the context of this paper are summarized in table 1.
These measures make use of several notions. (i) The distance (d) of two concepts
c1 and c2, is the number of superconcept edges between c1 and c2. (ii) The
depth (dep) of a concept refers to the distance of the concept to the unique
root node3. (iii) The lowest super ordinate (lso) of two concepts refers to the
concept with maximal depth that subsumes them both. (iv) The probability
P (c) of encountering a concept c which can be estimated from corpus statistics.
When probabilities are used, the measures follow the trail of information theory
in quantifying the information concept (IC) of an observation as the negative
log likelihood. We point the interested reader to [17] for a detailed and recent
survey of the field.

3 If the structure is not a perfect tree structure, we use the minimal depth.
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Document Similarity

industry

telephone

market

company

product

Doc 1 Doc 2
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Lexical Semantic Kernels

The document similarity is the following SK function:

where s is any similarity function between words, e.g. 
WordNet [Basili et al.,2005] similarity or LSA [Cristianini et 
al., 2002]
Good results when training data is small

€ 

SK(d1,d2) = s(w1,w2)
w1 ∈d1 ,w2 ∈d2

∑
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String Kernel

Given two strings, the number of matches between their 
substrings is evaluated

E.g. Bank and Rank
B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..
R, a , n , k, Ra, Ran, Rank, Rk, an, ank, nk,..

String kernel over sentences and texts

Huge space but there are efficient algorithms
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Using character sequences

zx 

⋅

  

€ 

φ("bank") =
 x = (0,..,1,..,0,..,1,..,0,......1,..,0,..,1,..,0,..,1,..,0)

counts the number of common substrings

bank       ank           bnk          bk          b

  

€ 

φ("rank") =
 z = (1,..,0,..,0,..,1,..,0,......0,..,1,..,0,..,1,..,0,..,1)

rank               ank                  rnk          rk            r

  

€ 

 x ⋅  z = φ("bank") ⋅ φ("rank") = k("bank","rank")
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Formal Definition

2.4. Kernel Methods 55

two:

(~x · ~z + c)2 =
� nX

i=1

xizi + c
�2 =

� nX

i=1

xizi + c
�� nX

j=1

xizi + c
�

=

=
nX

i=1

nX

j=1

xixjzizj + 2c
nX

i=1
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whose weights are controlled by the parameter c which also determines the
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2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of characters from
⌃, including the empty sequence. For string s and t we denote by |s| the length
of the string s = s1, .., s|s|, and by st the string obtained by concatenating the
string s and t. The string s[i : j] is the substring si, .., sj of s. We say that u is
a subsequence of s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... <

i|u|  |s|, such that uj = sij , for j = 1, ..., |u|, or u = s[~I] for short. The
length l(~I) of the subsequence in s is i|u| � ii + 1. We denote by ⌃⇤ the set of
all string

⌃⇤ =
1[

n=0

⌃n

We now define the feature space, F = {u1, u2..} = ⌃⇤, i.e. the space of
all possible substrings. We map a string s in R1 space as follows:

�u(s) =
X

~I:u=s[~I]

�l(~I) (2.25)
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for some �  1. These features measure the number of occurrences of subse-
quences in the string s weighting them according to their lengths. Hence, the
inner product of the feature vectors for two strings s and t give a sum over all
common subsequences weighted according to their frequency of occurrences
and lengths, i.e.

K(s, t) =
X

u2⌃⇤

�u(s) · �u(t) =
X

u2⌃⇤

X

~I:u=s[~I]

�l(~I)
X

~J :u=t[ ~J ]

�l( ~J) =

=
X

u2⌃⇤

X

~I:u=s[~I]

X

~J :u=t[ ~J ]

�l(~I)+l( ~J) (2.26)

The above equation defines a class of similarity functions known as string
kernels or sequence kernels. These functions are interesting for text catego-
rization as it allows the learning algorithm to quantify the matching between
two different words, phrases, sentences or whole documents. For example,
given two strings, Bank and Rank:

• B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

• R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.

Such substrings are the features in the ⌃⇤ that have non-null weights.
These are evaluated by means of Eq. 2.25, e.g. �B(Bank) = �(i1�i1+1) =
�(1�1+1) = �, �k(Bank) = �(i1�i1+1) = �(4�4+1) = �, �an(Bank) =
�(i2�i1+1) = �(3�2+1) = �2 and �Bk(Bank) = �(i2�i1+1) = �(4�1+1) = �4.

Since Eq. 2.26 requires that the substrings in Bank and Rank match, we
need to evaluate Eq. 2.25 only for the common substrings, i.e.:

- �a(Bank) = �a(Rank) = �(i1�i1+1) = �(2�2+1) = �,

- �n(Bank) = �n(Rank) = �(i1�i1+1) = �(3�3+1) = �,

- �k(Bank) = �k(Rank) = �(i1�i1+1) = �(4�4+1) = �,

- �an(Bank) = �an(Rank) = �(i1�i2+1) = �(3�2+1) = �2,

- �ank(Bank) = �ank(Rank) = �(i1�i3+1) = �(4�2+1) = �3,
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features (which have at least distinct weights). These are all monomials up to
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2.4.3 String Kernel

Kernel functions can be applied also to discrete space. As a first example, we
show their potentiality on the space of finite strings.
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Given the above observation, we can generalize the kernel from
degree 2 to a degree d by computing (~x · ~z)d. The results are all
monomials of degree d or equivalently all the conjunctions constituted
up to d features. The distinct features will be
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A still more general kernel can be derived by introducing a con-

stant in the scalar product computation. Hereafter, we show the case
for a degree equal to two:
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2.4.3. String Kernel

Kernel functions can be also applied to discrete space. As a first
example, we show their potentiality on the space of finite strings.

Let ⌃ be a finite alphabet. A string is a finite sequence of char-
acters from ⌃, including the empty sequence. We denote by |s| the
length of the string s = s1, .., s|s|, where si are symbols, and by st
the string obtained by concatenating the strings s and t. The string
s[i : j] is the substring si, .., sj of s. We say that u is a subsequence of
s, if there exist indices ~I = (i1, ..., i|u|), with 1  i1 < ... < i|u|  |s|,
such that uj = sij , for j = 1, ..., |u|, or u = s[~I] for short. The length

l(~I) of the subsequence in s is i|u| � i1 + 1. We denote by ⌃⇤ the set

•162



Kernel between Bank and Rank

56 Chapter 2. Statistical Machine Learning

for some �  1. These features measure the number of occurrences of subse-
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common subsequences weighted according to their frequency of occurrences
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The above equation defines a class of similarity functions known as string
kernels or sequence kernels. These functions are interesting for text catego-
rization as it allows the learning algorithm to quantify the matching between
two different words, phrases, sentences or whole documents. For example,
given two strings, Bank and Rank:

• B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

• R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.

Such substrings are the features in the ⌃⇤ that have non-null weights.
These are evaluated by means of Eq. 2.25, e.g. �B(Bank) = �(i1�i1+1) =
�(1�1+1) = �, �k(Bank) = �(i1�i1+1) = �(4�4+1) = �, �an(Bank) =
�(i2�i1+1) = �(3�2+1) = �2 and �Bk(Bank) = �(i2�i1+1) = �(4�1+1) = �4.

Since Eq. 2.26 requires that the substrings in Bank and Rank match, we
need to evaluate Eq. 2.25 only for the common substrings, i.e.:

- �a(Bank) = �a(Rank) = �(i1�i1+1) = �(2�2+1) = �,

- �n(Bank) = �n(Rank) = �(i1�i1+1) = �(3�3+1) = �,

- �k(Bank) = �k(Rank) = �(i1�i1+1) = �(4�4+1) = �,

- �an(Bank) = �an(Rank) = �(i1�i2+1) = �(3�2+1) = �2,

- �ank(Bank) = �ank(Rank) = �(i1�i3+1) = �(4�2+1) = �3,
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An example of string kernel computation
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Efficient Evaluation: Intuition

Dynamic Programming technique over:
The size of the two input strings, m, n and
The size of their common substrings, p

Evaluate the spectrum string kernels
Substrings of size p

Sum the contribution of the different p spectra
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Efficient Evaluation
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Evaluating DP2

Evaluate the weight of the string of size p in case a 
character will be matched 

This is done by multiplying the double summation by the 
number of substrings of size p-1
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Tree kernels

Syntactic Tree Kernel, Partial Tree kernel (PTK), 
Semantic Syntactic Tree Kernel, Smoothed PTK

Efficient computation
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Example of a parse tree

“John delivers a talk in Rome”

S ® N VP

VP ® V NP PP

PP ® IN N

N ® Rome
N

Rome

S

N

NP

D N

VP

VJohn

in

delivers 

a talk

PP

IN
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The Syntactic Tree Kernel (STK) 
[Collins and Duffy, 2002]

NP

D N

VP

V

delivers

a talk

NP

D N

VP

V

delivers

a

NP

D N

VP

V

delivers

NP

D N

VP

V NP

VP

V
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The overall fragment set

NP

D

VP

a

Children are not divided
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Explicit kernel space

zx 

⋅

  

€ 

φ(Tx ) =
 x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

counts the number of common substructures

  

€ 

φ(Tz) =
 z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)
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Efficient evaluation of the scalar product

  

€ 

 x ⋅  z = φ(Tx ) ⋅ φ(Tz ) = K(Tx,Tz ) =

                    =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑
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Efficient evaluation of the scalar product

[Collins and Duffy, ACL 2002] evaluate D in O(n2):

Δ(nx,nz ) = 0,   if the productions are different else
Δ(nx,nz ) =1,    if pre-terminals else

Δ(nx,nz ) = (1+Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏

  

€ 

 x ⋅  z = φ(Tx ) ⋅ φ(Tz ) = K(Tx,Tz ) =

                    =
nx ∈Tx

∑ Δ(nx,nz)
nz ∈Tz

∑
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Other Adjustments

Normalization

€ 

Δ(nx,nz ) = λ,    if pre - terminals else

Δ(nx,nz ) = λ (1+ Δ(ch(nx, j),ch(nz, j)))
j=1

nc(nx )

∏

€ 

" K (Tx,Tz ) =
K(Tx,Tz )

K(Tx,Tx ) ×K(Tz,Tz)
 

Decay factor
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Observations

We can order the production rules used in Tx and Tz,  at 
loading time

At learning time we can evaluate NP in 
|Tx|+|Tz | running time [Moschitti, EACL 2006]
If Tx and Tz are generated by only one production rule Þ
O(|Tx|´|Tz | )…Very Unlikely!!!!
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Trees can also be program derivation trees

while (x < y) {
   x = x + 1
   y = y - 1
}

while (b > a) {
   a = a + 1
   b = b - 1
}

while

block

x y

+

1

-

=

<

=

x

x

y

y 1

while

block

b a

+

1

-

=

>

=

a

a

b

b 1

while

block<

block

= =

x y

<

+

=

x -

=

y

+

1x

-

y 1

while

block>

block

= =

b a

>

+

=

a -

=

b

+

1a

-

b 1

CODE                                      AST                                                                     AST KERNEL
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Labeled Ordered Tree Kernel

NP

D N

VP

V

gives

a talk

NP

D N

VP

V

a talk

NP

D N

VP

a talk

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NPNP

D N D

NP

…

VP

STK satisfies the constraint “remove 0 or all children at a 
time”.

If we relax such constraint we get more general 
substructures [Kashima and Koyanagi, 2002]
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Weighting Problems

Both matched pairs give the same 
contribution

Gap based weighting is needed
A novel efficient evaluation has to 
be defined

NP

D N

VP

V

gives

a talk

NP

D N

VP

V

a talk

NP

D N

VP

V

gives

a talk

gives

N

math

NP

D N

VP

V

gives

a talk

JJ

bad

•179



Partial Tree Kernel (PTK)
[Moschitti, ECML 2006]

NP

D N

VP

V

brought

a cat

NP

D N

VP

V

a cat

NP

D N

VP

a cat

NP

D N

VP

a

NP

D

VP

a

NP

D

VP

NP

N

VP

NP

N

NPNP

D N D

NP

…

VP

STK + String Kernel with weighted gaps on nodes’ children
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Partial Tree Kernel - Definition

By adding two decay factors we obtain:
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Efficient Evaluation (1)

In [Taylor and Cristianini, 2004 book], sequence kernels with 
weighted gaps are factorized with respect to different 
subsequence sizes
We treat children as sequences and apply the same theory

Dp

those defined in [7, 2, 3, 5, 13]. Additionally, we add two decay factors: µ for the
height of the tree and ∏ for the length of the child sequences. It follows that

¢(n1, n2) = µ
≥
∏2 +

X

J1,J2,l(J1)=l(J2)

∏d(J1)+d(J2)

l(J1)Y

i=1

¢(cn1
[J1i], cn2

[J2i])
¥

(3)

where d(J1) = J1l(J1) ° J11 and d(J2) = J2l(J2) ° J21. In this way, we pe-
nalize both larger trees and subtrees built on child subsequences that contain
gaps. Moreover, to have a similarity score between 0 and 1, we also apply the
normalization in the kernel space, i.e. K0(T1, T2) = K(T1,T2)p

K(T1,T1)£K(T2,T2)
.

3.2 E±cient tree kernel computation
Clearly, the naive approach to evaluate Eq. 3 requires exponential time. We can
e±ciently compute it by considering that the summation in Eq. 3 can be dis-
tributed with respect to diÆerent types of sequences, e.g. those composed by p

children; it follows that ¢(n1, n2) = µ
°
∏

2 +
Plm

p=1 ¢p(cn1
, cn2

)
¢
, (4)

where ¢p evaluates the number of common subtrees rooted in subsequences of
exactly p children (of n1 and n2) and lm = min{l(cn1), l(cn2)}. Note also that
if we consider only the contribution of the longest child sequence from node
pairs that have the same children, we implement the SST kernel. For the STs
computation we need also to remove the ∏

2 term from Eq. 4.
Given the two child sequences s1a = cn1

and s2b = cn2
(a and b are the last

children),

¢p(s1a, s2b) = ¢(a, b)£
|s1|X

i=1

|s2|X

r=1

∏
|s1|°i+|s2|°r £¢p°1(s1[1 : i], s2[1 : r]),

where s1[1 : i] and s2[1 : r] are the child subsequences from 1 to i and from
1 to r of s1 and s2. If we name the double summation term as Dp, we can
rewrite the relation as:

¢p(s1a, s2b) =

(
¢(a, b)Dp(|s1|, |s2|) if a = b;

0 otherwise.

Note that Dp satisfies the recursive relation: Dp(k, l) =
¢p°1(s1[1 : k], s2[1 : l]) + ∏Dp(k, l° 1) + ∏Dp(k° 1, l) + ∏

2
Dp(k° 1, l° 1) (5)

By means of the above relation, we can compute the child subsequences of two
sequences s1 and s2 in O(p|s1||s2|). This means that the worst case complexity
of the PT kernel is O(pΩ

2|NT1
||NT2

|), where Ω is the maximum branching factor
of the two trees. Note that the average Ω in natural language parse trees is very
small and the overall complexity can be reduced by avoiding the computation
of node pairs with diÆerent labels. The next section shows our fast algorithm to
find non-null node pairs.
3.3 Fast non-null node pair computation
To compute the tree kernels, we sum the ¢ function for each pair hn1, n2i2
NT1

£ NT2
(Eq. 1). When the labels associated with n1 and n2 are diÆerent,

we can avoid evaluating ¢(n1, n2) since it is 0. Thus, we look for a node pair
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Efficient Evaluation (2)

The complexity of finding the subsequences is                        

Therefore the overall complexity is
where r is the maximum branching factor (p = r)
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Running Time of Tree Kernel Functions

STK (fast)
STK (slow)
PTK (fast)
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Syntactic/Semantic Tree Kernels (SSTK)
[Bloehdorn & Moschitti, ECIR 2007 & CIKM 2007]

NP

D N

VP

V

gives

a talk

JJ

good

NP

D N

VP

V

gives

a talk

JJ

solid

Similarity between the fragment leaves
Tree kernel + Lexical Similarity Kernel
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Equations of SSTK

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments
f1, f2 2 F , we define the Tree Fragment Similarity Kernel as6:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal
nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the
t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and
T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch1

n2
),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch1

n1
and ch1

n2
)

and such children are words and (b) Step 2 is no longer necessary.
Beside the novelty of taking into account tree fragments that are not identical

it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments
f1, f2 2 F , we define the Tree Fragment Similarity Kernel as6:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal
nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the
t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and
T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch1

n2
),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch1

n1
and ch1

n2
)

and such children are words and (b) Step 2 is no longer necessary.
Beside the novelty of taking into account tree fragments that are not identical

it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.
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Example of an SSTK evaluation

NP

D N

VP

V

gives

a talk

JJ

good 

NP

D N

VP

V

gives

a talk

JJ

solid

KS(gives,gives)*KS(a,a)*
KS(good,solid)*KS(talk,talk)
= 1 * 1 * 0.5 * 1 = 0.5

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments
f1, f2 2 F , we define the Tree Fragment Similarity Kernel as6:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal
nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the
t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and
T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch1

n2
),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch1

n1
and ch1

n2
)

and such children are words and (b) Step 2 is no longer necessary.
Beside the novelty of taking into account tree fragments that are not identical

it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.
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Delta Evaluation is very simple

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments
f1, f2 2 F , we define the Tree Fragment Similarity Kernel as6:

∑F (f1, f2) = comp(f1, f2)
nt(f1)Y

t=1

∑S(f1(t), f2(t))

where comp(f1, f2) (compatible) is 1 if f1 diÆers from f2 only in the terminal
nodes and is 0 otherwise, nt(fi) is the number of terminal nodes and fi(t) is the
t-th terminal symbol of fi (numbered from left to right).

Conceptually, this means that the similarity of two tree fragments is above
zero only if the tree fragments have an identical structure. The fragment sim-
ilarity is evaluated as the product of all semantic similarities of corresponding
terminal nodes (i.e. sitting at identical positions). It is maximal if all pairs have
a similarity score of 1. We now define the overall tree kernel as the sum over the
evaluations of ∑F over all pairs of tree fragments in the argument trees. Techni-
cally, this means changing the summation in the second formula of definition 3
as in the following definition.

Definition 5 (Semantic Syntactic Tree Kernel). Given two trees T1 and
T2 we define the Semantic Syntactic Tree Kernel as:

∑T (T1, T2) =
X

n12NT1

X

n22NT2

¢(n1, n2)

where ¢(n1, n2) =
P|F|

i=1

P|F|
j=1 Ii(n1)Ij(n2)∑F (fi, fj).

Obviously, the naive evaluation of this kernel would require even more com-
putation and memory than for the naive computation of the standard kernel as
also all compatible pairs of tree fragments would need to be considered in the
summation. Luckily, this enhanced kernel can be evaluated in the same way as
the standard tree kernel by adding the following step

0. if n1 and n2 are pre-terminals and label(n1) = label(n2) then ¢(n1, n2) =
∏∑S(ch1

n1
, ch1

n2
),

as the first condition of the ¢ function definition (Section 4), where label(ni)
is the label of node ni and ∑S is a term similarity kernel, e.g. based on the
superconcept kernel defined in section 3.2. Note that: (a) since n1 and n2 are
pre-terminals of a parse tree they can have only one child (i.e. ch1

n1
and ch1

n2
)

and such children are words and (b) Step 2 is no longer necessary.
Beside the novelty of taking into account tree fragments that are not identical

it should be noted that the lexical semantic similarity is constrained in syntactic
structures, which limit errors/noise due to incorrect (or, as in our case, not
provided) word sense disambiguation.
6 Note that, as the tree fragments need to be compatible, they have the same number

of terminal symbols at compatible positions.

where ¢(n1, n2) =
P|F|

i=1 Ii(n1)Ii(n2), and where Ii(n) is an indicator function
which determines whether fragment fi is rooted in node n.

¢ is equal to the number of common fragments rooted at nodes n1 and n2.
We can compute it more e±ciently as follows:

1. if the productions at n1 and n2 are diÆerent then ¢(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have

leaf children (i.e. the argument nodes are pre-terminals symbols) then
¢(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then

¢(n1, n2) =
nc(n1)Y

j=1

(1 + ¢(chj
n1

, chj
n2

)).

where nc(n1) is the number of children of n1 and chj
n is the j-th child of node

n. Note that, since the productions are the same, nc(n1) = nc(n2). Of course,
the kernel can again be normalized using the cosine normalization modifier.
Additionally, a decay factor ∏ can be added by modifying steps (2) and (3) as
follows:

2. ¢(n1, n2) = ∏,
3. ¢(n1, n2) = ∏

Qnc(n1)
j=1 (1 + ¢(chj

n1
, chj

n2
)).

As an example, Figure 1 shows a parse tree of the sentence (fragment)
‘‘bought a cat’’ with some of the substructures that the tree kernel uses
to represent it5.

5 Designing Semantic Syntactic Tree Kernels

The Tree Kernel introduced in the previous section relies on the intuition of
counting all common substructures of two trees. However, if two trees have simi-
lar structures but employ diÆerent though related terminology at the leaves, they
will not be matched. From a semantic point of view, this is an evident drawback
as ‘‘brought a cat’’ should be more related to ‘‘brought a tomcat’’ than
to ‘‘brought a note’’.

In analogy with the semantic smoothing kernels for the bag-of-words kernel
as described in section 3.2, we are now interested in also counting partial matches
between tree fragments. A partial match occurs when two fragments diÆer only
by their terminal symbols, e.g. [N [cat]] and [N [tomcat]]. In this case the
match should give a contribution smaller than 1, depending on the semantic
similarity of the respective terminal nodes. For this purpose, we first define the
similarity of two such tree fragments.
5 The number of such fragments can be obtained by evaluating the kernel function

between the tree with itself.

where ¢(n1, n2) =
P|F|

i=1 Ii(n1)Ii(n2), and where Ii(n) is an indicator function
which determines whether fragment fi is rooted in node n.

¢ is equal to the number of common fragments rooted at nodes n1 and n2.
We can compute it more e±ciently as follows:

1. if the productions at n1 and n2 are diÆerent then ¢(n1, n2) = 0;
2. if the productions at n1 and n2 are the same, and n1 and n2 only have

leaf children (i.e. the argument nodes are pre-terminals symbols) then
¢(n1, n2) = 1;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not pre-
terminals then

¢(n1, n2) =
nc(n1)Y

j=1

(1 + ¢(chj
n1

, chj
n2

)).

where nc(n1) is the number of children of n1 and chj
n is the j-th child of node

n. Note that, since the productions are the same, nc(n1) = nc(n2). Of course,
the kernel can again be normalized using the cosine normalization modifier.
Additionally, a decay factor ∏ can be added by modifying steps (2) and (3) as
follows:

2. ¢(n1, n2) = ∏,
3. ¢(n1, n2) = ∏

Qnc(n1)
j=1 (1 + ¢(chj

n1
, chj

n2
)).

As an example, Figure 1 shows a parse tree of the sentence (fragment)
‘‘bought a cat’’ with some of the substructures that the tree kernel uses
to represent it5.

5 Designing Semantic Syntactic Tree Kernels

The Tree Kernel introduced in the previous section relies on the intuition of
counting all common substructures of two trees. However, if two trees have simi-
lar structures but employ diÆerent though related terminology at the leaves, they
will not be matched. From a semantic point of view, this is an evident drawback
as ‘‘brought a cat’’ should be more related to ‘‘brought a tomcat’’ than
to ‘‘brought a note’’.

In analogy with the semantic smoothing kernels for the bag-of-words kernel
as described in section 3.2, we are now interested in also counting partial matches
between tree fragments. A partial match occurs when two fragments diÆer only
by their terminal symbols, e.g. [N [cat]] and [N [tomcat]]. In this case the
match should give a contribution smaller than 1, depending on the semantic
similarity of the respective terminal nodes. For this purpose, we first define the
similarity of two such tree fragments.
5 The number of such fragments can be obtained by evaluating the kernel function

between the tree with itself.
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Smoothed Partial Tree Kernels
[Moschitti, EACL 2009; Croce et al., 2011] 

Same idea of Syntactic Semantic Tree Kernel but the 
similarity is extended to any node of the tree

The tree fragments are those generated by PTK
Basically it extends PTK with similarities
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Examples of Dependency Trees

What is the width of a football field?
What is the length of the biggest tennis court?
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Equation of SPTK

If	n1 and	n2 are	leaves	then

else

PTKLexical Similarity
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Different versions of Computational 
Dependency Trees for PTK/SPTK
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presents the experimental evaluation for QC and Section 4 derives

the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification

(QC) task can be easily modeled by representing questions, i.e.,

the classification objects, with their parse trees. Several syntactic

representations exist, we report the most interesting and effective

structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,

i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-

tion to the lexicals to improve generalization and, at the same time,

we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective

(::a), determiner (::d) and so on, to them. This is useful to mea-

sure similarity between lexicals belonging to the same grammatical

category. Our conversion of dependency structures in dependency

trees is done in two steps:

• we generate the tree that includes only lexicals, where the

edges encode their dependencies. We call it the Lexical Only

Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which

encode the grammatical function and POS-Tag, i.e. node fea-

tures. We call this structure the Lexical Centered Tree (LCT),

e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-

ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-

ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)

CT 91.20% 90.80% 91.00%

LOCT - 89.20% 93.20%

LCT - 90.80% 94.80%
LPST - 89.40% 89.60%

BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added

as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present

results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions
1
.

The latter are organized in six coarse-grained classes, i.e., ABBRE-

VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and

NUMBER.

For learning our models, we extended the SVM-LightTK soft-

ware
2

[14, 15] (which includes structural kernels, i.e., STK and

PTK in SVMLight [8]) with the smooth match between tree nodes,

i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]

whereas we applied LTH syntactic parser (described in [12]) to gen-

erate dependency trees.

The lexical similarity was designed with LSA applied to uk-

Wak [1], which is a large scale document collection made by 2

billion tokens (see [7] for more details). We implemented multi-

classification using one-vs-all scheme and selecting the category

associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-

ble 1. The first column shows the different structures described

in Section 2. The first row lists the tree kernel models. The last

row reports the accuracy of bag-of-words (BOW), which is a linear

kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved

by STK, current state-of-the-art
3

in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a

slightly lower value (non-statistically significant difference);

and

• PTK applied to LCT, which contains structures but also gram-

matical functions and PoS-tags, achieves higher accuracy than

when applied to LOCT (no grammatical/syntactic features)

or to LPST (no structure).

1
http://cogcomp.cs.illinois.edu/Data/QA/QC/

2
http://disi.unitn.it/moschitti/Tree-Kernel.htm

3
Note that higher accuracy values for smoothed STK are shown in

[4] but the one optimizing a validation set is not shown.
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• we generate the tree that includes only lexicals, where the

edges encode their dependencies. We call it the Lexical Only

Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which

encode the grammatical function and POS-Tag, i.e. node fea-

tures. We call this structure the Lexical Centered Tree (LCT),

e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-

ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-

ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)

CT 91.20% 90.80% 91.00%

LOCT - 89.20% 93.20%

LCT - 90.80% 94.80%
LPST - 89.40% 89.60%

BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added

as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present

results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions
1
.

The latter are organized in six coarse-grained classes, i.e., ABBRE-

VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and

NUMBER.

For learning our models, we extended the SVM-LightTK soft-

ware
2

[14, 15] (which includes structural kernels, i.e., STK and

PTK in SVMLight [8]) with the smooth match between tree nodes,

i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]

whereas we applied LTH syntactic parser (described in [12]) to gen-

erate dependency trees.

The lexical similarity was designed with LSA applied to uk-

Wak [1], which is a large scale document collection made by 2

billion tokens (see [7] for more details). We implemented multi-

classification using one-vs-all scheme and selecting the category

associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-

ble 1. The first column shows the different structures described

in Section 2. The first row lists the tree kernel models. The last

row reports the accuracy of bag-of-words (BOW), which is a linear

kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved

by STK, current state-of-the-art
3

in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a

slightly lower value (non-statistically significant difference);

and

• PTK applied to LCT, which contains structures but also gram-

matical functions and PoS-tags, achieves higher accuracy than

when applied to LOCT (no grammatical/syntactic features)

or to LPST (no structure).

1
http://cogcomp.cs.illinois.edu/Data/QA/QC/

2
http://disi.unitn.it/moschitti/Tree-Kernel.htm

3
Note that higher accuracy values for smoothed STK are shown in

[4] but the one optimizing a validation set is not shown.

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives

the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification

(QC) task can be easily modeled by representing questions, i.e.,

the classification objects, with their parse trees. Several syntactic

representations exist, we report the most interesting and effective

structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,

i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-

tion to the lexicals to improve generalization and, at the same time,

we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective

(::a), determiner (::d) and so on, to them. This is useful to mea-

sure similarity between lexicals belonging to the same grammatical

category. Our conversion of dependency structures in dependency

trees is done in two steps:

• we generate the tree that includes only lexicals, where the
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NUMBER.
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[14, 15] (which includes structural kernels, i.e., STK and
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i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]

whereas we applied LTH syntactic parser (described in [12]) to gen-

erate dependency trees.

The lexical similarity was designed with LSA applied to uk-

Wak [1], which is a large scale document collection made by 2

billion tokens (see [7] for more details). We implemented multi-

classification using one-vs-all scheme and selecting the category

associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-

ble 1. The first column shows the different structures described

in Section 2. The first row lists the tree kernel models. The last

row reports the accuracy of bag-of-words (BOW), which is a linear

kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved

by STK, current state-of-the-art
3

in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a
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and

• PTK applied to LCT, which contains structures but also gram-
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Outline:  Part I – Classification with Kernels

Classification with Kernels (15 min)
Question Classification (QC) using constituency, 
dependency and semantic structures
Question Classification (QC) in Jeopardy!
Relation Extraction with kernels
Kernel-Based Coreference Resolution
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IBM Watson (simplified) Pipeline

Question
Classification
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Question Classification

Definition: What does HTML stand for?

Description: What's the final line in the Edgar Allan Poe 
poem "The Raven"?

Entity: What foods can cause allergic reaction in people?
Human: Who won the Nobel Peace Prize in 1992?
Location: Where is the Statue of Liberty?

Manner: How did Bob Marley die?
Numeric: When was Martin Luther King Jr. born?
Organization: What company makes Bentley cars?
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Question Classifier based on Tree Kernels

Question dataset (http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)   
[Lin and Roth, 2005])

Distributed on 6 categories: Abbreviations, Descriptions, Entity, 
Human, Location, and Numeric.

Fixed split 5500 training and 500 test questions 
Using the whole question parse trees

Constituent parsing
Example

“Who did deliver a talk?”
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Syntactic Parse Trees (PT)
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Some fragments from the VP subtree
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Explicit kernel space

zx 

⋅

  

€ 

φ(Tx ) =
 x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

counts the number of common substructures

  

€ 

φ(Tz) =
 z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)
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Question Classification with SSTK
[Blohedorn&Moschitti, CIKM2007]

Syntactic Tree Kernel
(STK)

Syntactic Tree Kernel
with similarities (SSTK)
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Same Task with PTK, SPTK and 
Dependency Trees
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2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification

(QC) task can be easily modeled by representing questions, i.e.,

the classification objects, with their parse trees. Several syntactic

representations exist, we report the most interesting and effective

structures that we proposed in [7]. Given the following sentence:
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the representation tree according to a phrase structure paradigm,

i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-

tion to the lexicals to improve generalization and, at the same time,

we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective

(::a), determiner (::d) and so on, to them. This is useful to mea-

sure similarity between lexicals belonging to the same grammatical

category. Our conversion of dependency structures in dependency

trees is done in two steps:

• we generate the tree that includes only lexicals, where the

edges encode their dependencies. We call it the Lexical Only

Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which

encode the grammatical function and POS-Tag, i.e. node fea-

tures. We call this structure the Lexical Centered Tree (LCT),

e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-

ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-

ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)

CT 91.20% 90.80% 91.00%
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LCT - 90.80% 94.80%
LPST - 89.40% 89.60%
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simple sequence of PoS-tag nodes, where lexicals are simply added

as children.
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larity embedded in syntactic structures. For this purpose, we present

results on QC and the related error analysis.
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by a training set of 5,452 questions and a test set of 500 questions
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.

The latter are organized in six coarse-grained classes, i.e., ABBRE-

VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and

NUMBER.

For learning our models, we extended the SVM-LightTK soft-

ware
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[14, 15] (which includes structural kernels, i.e., STK and

PTK in SVMLight [8]) with the smooth match between tree nodes,

i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]

whereas we applied LTH syntactic parser (described in [12]) to gen-

erate dependency trees.

The lexical similarity was designed with LSA applied to uk-

Wak [1], which is a large scale document collection made by 2

billion tokens (see [7] for more details). We implemented multi-

classification using one-vs-all scheme and selecting the category

associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-

ble 1. The first column shows the different structures described

in Section 2. The first row lists the tree kernel models. The last

row reports the accuracy of bag-of-words (BOW), which is a linear

kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved

by STK, current state-of-the-art
3

in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a

slightly lower value (non-statistically significant difference);

and

• PTK applied to LCT, which contains structures but also gram-

matical functions and PoS-tags, achieves higher accuracy than

when applied to LOCT (no grammatical/syntactic features)
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Note that higher accuracy values for smoothed STK are shown in
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associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-

ble 1. The first column shows the different structures described

in Section 2. The first row lists the tree kernel models. The last

row reports the accuracy of bag-of-words (BOW), which is a linear

kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved

by STK, current state-of-the-art
3

in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a

slightly lower value (non-statistically significant difference);

and

• PTK applied to LCT, which contains structures but also gram-

matical functions and PoS-tags, achieves higher accuracy than

when applied to LOCT (no grammatical/syntactic features)

or to LPST (no structure).

1
http://cogcomp.cs.illinois.edu/Data/QA/QC/

2
http://disi.unitn.it/moschitti/Tree-Kernel.htm

3
Note that higher accuracy values for smoothed STK are shown in

[4] but the one optimizing a validation set is not shown.
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presents the experimental evaluation for QC and Section 4 derives

the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification

(QC) task can be easily modeled by representing questions, i.e.,

the classification objects, with their parse trees. Several syntactic

representations exist, we report the most interesting and effective

structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,

i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-

tion to the lexicals to improve generalization and, at the same time,

we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective

(::a), determiner (::d) and so on, to them. This is useful to mea-

sure similarity between lexicals belonging to the same grammatical

category. Our conversion of dependency structures in dependency

trees is done in two steps:

• we generate the tree that includes only lexicals, where the

edges encode their dependencies. We call it the Lexical Only

Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which

encode the grammatical function and POS-Tag, i.e. node fea-

tures. We call this structure the Lexical Centered Tree (LCT),

e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-

ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-

ure 4, which ignores the syntactic structure of the sentence being a

STK PTK SPTK(LSA)

CT 91.20% 90.80% 91.00%

LOCT - 89.20% 93.20%

LCT - 90.80% 94.80%
LPST - 89.40% 89.60%

BOW 88.80%

Table 1: Accuracy of structural kernels applied to different
structures on QC

simple sequence of PoS-tag nodes, where lexicals are simply added

as children.

3. EXPERIMENTS
The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present

results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions
1
.

The latter are organized in six coarse-grained classes, i.e., ABBRE-

VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and

NUMBER.

For learning our models, we extended the SVM-LightTK soft-

ware
2

[14, 15] (which includes structural kernels, i.e., STK and

PTK in SVMLight [8]) with the smooth match between tree nodes,

i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]

whereas we applied LTH syntactic parser (described in [12]) to gen-

erate dependency trees.

The lexical similarity was designed with LSA applied to uk-

Wak [1], which is a large scale document collection made by 2

billion tokens (see [7] for more details). We implemented multi-

classification using one-vs-all scheme and selecting the category

associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-

ble 1. The first column shows the different structures described

in Section 2. The first row lists the tree kernel models. The last

row reports the accuracy of bag-of-words (BOW), which is a linear

kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved

by STK, current state-of-the-art
3

in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a

slightly lower value (non-statistically significant difference);

and

• PTK applied to LCT, which contains structures but also gram-

matical functions and PoS-tags, achieves higher accuracy than

when applied to LOCT (no grammatical/syntactic features)

or to LPST (no structure).

1
http://cogcomp.cs.illinois.edu/Data/QA/QC/

2
http://disi.unitn.it/moschitti/Tree-Kernel.htm

3
Note that higher accuracy values for smoothed STK are shown in

[4] but the one optimizing a validation set is not shown.

LOCT

LCT

LPST
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State-of-the-art Results 
[Croce et al., EMNLP 2011]

be::v

?::.width::n

of::i

field::n

football::na::d

the::d

what::w

Figure 2: Lexical Only Centered Tree (LOCT).

be::v

VBZROOT?::.

.P

width::n

NNPRDof::i

INNMODfield::n

the::d

DTNMOD

what::w

WPSBJ

field::n

NNPMODfootball::n

NNNMOD

a::d

DTNMOD

Figure 3: Lexical Centered Tree (LCT).

TOP

.

?::.

NN

field::n

NN

football::n

DT

a::d

IN

of::i

NN

width::n

DT

the::d

VBZ

be::v

WP

what::w

Figure 4: Lexical and PoS-Tag Sequences Tree (LPST).

presents the experimental evaluation for QC and Section 4 derives

the conclusions.

2. COMPUTATIONAL STRUCTURES FOR
QUESTION CLASSIFICATION

Thanks to structural kernel similarity, a question classification

(QC) task can be easily modeled by representing questions, i.e.,

the classification objects, with their parse trees. Several syntactic

representations exist, we report the most interesting and effective

structures that we proposed in [7]. Given the following sentence:

(s1) What is the width of a football field?

the representation tree according to a phrase structure paradigm,

i.e. constituency tree (CT), is in Figure 1. We apply lemmatiza-

tion to the lexicals to improve generalization and, at the same time,

we add a generalized PoS-tag, i.e. noun (n::), verb (v::), adjective

(::a), determiner (::d) and so on, to them. This is useful to mea-

sure similarity between lexicals belonging to the same grammatical

category. Our conversion of dependency structures in dependency

trees is done in two steps:

• we generate the tree that includes only lexicals, where the

edges encode their dependencies. We call it the Lexical Only

Centered Tree (LOCT), e.g. see Figure 2.

• To each lexical node, we add two leftmost children, which

encode the grammatical function and POS-Tag, i.e. node fea-

tures. We call this structure the Lexical Centered Tree (LCT),

e.g. see Figure 3.

Additionally, for comparative purposes, we define a flat struc-

ture, the Lexical and PoS-tag Sequences Tree (LPST), e.g. see Fig-

ure 4, which ignores the syntactic structure of the sentence being a
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as children.
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The aim of the experiments is to analyze the role of lexical simi-

larity embedded in syntactic structures. For this purpose, we present

results on QC and the related error analysis.

3.1 Setup
Our referring corpus is the UIUC dataset [13]. It is composed

by a training set of 5,452 questions and a test set of 500 questions
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.

The latter are organized in six coarse-grained classes, i.e., ABBRE-

VIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and

NUMBER.

For learning our models, we extended the SVM-LightTK soft-

ware
2

[14, 15] (which includes structural kernels, i.e., STK and

PTK in SVMLight [8]) with the smooth match between tree nodes,

i.e. the SPTK defined in [7].

For generating constituency trees, we used Charniak’s parser [5]

whereas we applied LTH syntactic parser (described in [12]) to gen-

erate dependency trees.

The lexical similarity was designed with LSA applied to uk-

Wak [1], which is a large scale document collection made by 2

billion tokens (see [7] for more details). We implemented multi-

classification using one-vs-all scheme and selecting the category

associated with the maximum SVM margin.

3.2 Classification Results
The F1 of SVMs using (i) STK applied to CT and (ii) PTK and

SPTK applied to the several structures for QC is reported in Ta-

ble 1. The first column shows the different structures described

in Section 2. The first row lists the tree kernel models. The last

row reports the accuracy of bag-of-words (BOW), which is a linear

kernel applied to lexical vectors.

It is worth nothing that:

• BOW produces high accuracy, i.e. 88.8% but it is improved

by STK, current state-of-the-art
3

in QC [18, 17];

• PTK applied to the same tree of STK (i.e. CT) produces a

slightly lower value (non-statistically significant difference);

and

• PTK applied to LCT, which contains structures but also gram-

matical functions and PoS-tags, achieves higher accuracy than

when applied to LOCT (no grammatical/syntactic features)

or to LPST (no structure).
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[4] but the one optimizing a validation set is not shown.
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Classification, 
Ranking, Regression 

and 
Multiclassification



The Ranking SVM 
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

The aim is to classify instance pairs as correctly 
ranked or incorrectly ranked

This turns an ordinal regression problem back into a binary 
classification problem

We want a ranking function f such that
xi > xj iff f(xi) > f(xj)

… or at least one that tries to do this with minimal error
Suppose that f is a linear function 

f(xi) = w�xi

•Sec. 15.4.2



The Ranking SVM 
Ranking Model: f(xi)

€ 

f (x
i
)

•Sec. 15.4.2



The Ranking SVM 

Then (combining the two equations on the last 
slide):

xi > xj iff w�xi − w�xj > 0
xi > xj iff w�(xi − xj) > 0

Let us then create a new instance space from 
such pairs:            zk = xi − xk

yk = +1, −1 as xi ≥, < xk

•Sec. 15.4.2



Support Vector Ranking

Given two examples we build one example (xi , xj)

2.3. The Support Vector Machines 43

of errors should be the lowest possible. This trade-off between the separability

with highest margin and the number of errors can be specified by (a) intro-

ducing slack variables ξi in the inequality constraints of Problem 2.13 and (b)

adding the minimization the number of errors in the objective function. The

resulting optimization problem is

⎧

⎪

⎨

⎪

⎩

min 1
2 ||w⃗|| + C

∑m
i=1 ξ2

i

yi(w⃗ · x⃗i + b) ≥ 1 − ξi, ∀i = 1, ..,m

ξi ≥ 0, i = 1, ..,m

(2.21)

⎧

⎪

⎨

⎪

⎩

min 1
2 ||w⃗|| + C

∑m
i=1 ξ2

i

yk(w⃗ · (x⃗i − x⃗j) + b) ≥ 1 − ξk, ∀i, j = 1, ..,m

ξk ≥ 0, k = 1, ..,m2

(2.22)

yk = 1 if rank(x⃗i) > rank(x⃗j), 0 otherwise, where k = i × m + j

whose the main characteristics are:

- The constraint yi(w⃗ · x⃗i + b) ≥ 1 − ξi allows the point x⃗i to violate the

hard constraint of Problem 2.13 of a quantity equal to ξi. This is clearly

shown by the outliers in Figure 2.14, e.g. x⃗i.

- If a point is misclassified by the hyperplane then the slack variable as-

sumes a value larger than 1. For example, Figure 2.14 shows the mis-

classified point xi and its associated slack variable ξi which is necessar-

ily > 1. Thus,
∑m

i=1 ξi is an upperbound to the number of errors. The

same property is held by the quantity,
∑m

i=1 ξ2
i , which can be used as an

alternative bound.

- The constant C tunes the trade-off between the classification errors and

the margin. The higher C is, the lower number of errors the optimal

solution commits. For C → ∞, Problem 2.22 approximates Problem

2.13.

- Similarly to the hard margin error probability upperbound, it can be

proven that minimizing ||w⃗|| + C
∑m

i=1 ξ2
i minimizes the error proba-

bility of classifiers which are not perfectly consistent with the training

data, e.g. they do not necessarily classify correctly all the training data.

€ 

−1



Support Vector Regression (SVR)
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Support Vector Regression

yi is not -1 or 1 anymore, now it is a value

e is the tollerance of our function value



From Binary to Multiclass classifiers

Three different approaches:

ONE-vs-ALL (OVA)

Given the example sets, {E1, E2, E3, …} for the categories: {C1, 
C2, C3,…} the binary classifiers: {b1, b2, b3,…} are built.

For b1, E1 is the set of positives and E2ÈE3 È… is the set of 
negatives, and so on

For testing: given a classification instance x, the category is the 
one associated with the maximum margin among all binary 
classifiers



From Binary to Multiclass classifiers

ALL-vs-ALL (AVA)
Given the examples: {E1, E2, E3, …} for the categories {C1, C2, 
C3,…} 

build the binary classifiers:
{b1_2, b1_3,…, b1_n, b2_3, b2_4,…, b2_n,…,bn-1_n} 

by learning on E1 (positives) and E2 (negatives), on E1 
(positives) and E3 (negatives) and so on…

For testing: given an example x, 

all the votes of all classifiers are collected

where bE1E2 = 1 means a vote for C1 and  bE1E2 = -1 is a vote 
for C2

Select the category that gets more votes



Natural Language Processing 
and Information Retrieval

Alessandro Moschitti

Department of information and communication technology 
University of Trento 

Email: moschitti@dit.unitn.it

Structured Output



Simple Structured Output

We have seen methods for: binary Classifier or 
multiclassifier single label
Multiclass-Multilabel is a structured output, i.e. a 
label subset is output



From Binary to Multiclass classifiers

Three different approaches:

ONE-vs-ALL (OVA)
Given the example sets, {E1, E2, E3, …} for the categories: {C1, 
C2, C3,…} the binary classifiers: {b1, b2, b3,…} are built.

For b1, E1 is the set of positives and E2ÈE3 È… is the set of 
negatives, and so on

For testing: given a classification instance x, the category is the 
one associated with the maximum margin among all binary 
classifiers



From Binary to Multiclass classifiers

ALL-vs-ALL (AVA)
Given the examples: {E1, E2, E3, …} for the categories {C1, C2, 
C3,…} 

build the binary classifiers:
{b1_2, b1_3,…, b1_n, b2_3, b2_4,…, b2_n,…,bn-1_n} 

by learning on E1 (positives) and E2 (negatives), on E1 
(positives) and E3 (negatives) and so on…

For testing: given an example x, 

all the votes of all classifiers are collected

where bE1E2 = 1 means a vote for C1 and  bE1E2 = -1 is a vote 
for C2

Select the category that gets more votes



From Binary to Multiclass classifiers

Error Correcting Output Codes (ECOC)
The training set is partitioned according to binary sequences 
(codes) associated with category sets. 

For example, 10101 indicates that the set of examples of 
C1,C3 and  C5 are used to train the C10101 classifier. 

The data of the other categories, i.e. C2 and C4 will be 
negative examples 

In testing: the code-classifiers are used to decode one the original 
class, e.g.
C10101 = 1 and C11010 = 1 indicates that the instance belongs to C1

That is, the only one consistent with the codes



Designing Global Classifiers

Each class has a parameter vector (wk,bk)
x is assigned to class k iff

For simplicity set bk=0 
(add a dimension and include it in wk)
The goal (given separable data) is to choose wk s.t.



Multi-class SVM

Primal problem: QP



Structured Output Model

Main idea: define scoring function which 
decomposes as sum of features scores k on 
“parts” p:

Label examples by looking for max score:

Parts = nodes, edges, etc. space of feasible 
outputs



Structured Perceptron



For each datapoint

Averaged perceptron:

Predict:

Update:

(Averaged) Perceptron 



Predict:

Update:

Feature encoding:

Predict:

Update:

Example: multiclass setting



Output of Ranked Example List



Support Vector Ranking

Given two examples we build one example (xi , xj)

2.3. The Support Vector Machines 43

of errors should be the lowest possible. This trade-off between the separability

with highest margin and the number of errors can be specified by (a) intro-

ducing slack variables ξi in the inequality constraints of Problem 2.13 and (b)

adding the minimization the number of errors in the objective function. The

resulting optimization problem is

⎧

⎪

⎨

⎪

⎩

min 1
2 ||w⃗|| + C

∑m
i=1 ξ2

i

yi(w⃗ · x⃗i + b) ≥ 1 − ξi, ∀i = 1, ..,m

ξi ≥ 0, i = 1, ..,m

(2.21)

⎧

⎪

⎨

⎪

⎩

min 1
2 ||w⃗|| + C

∑m
i=1 ξ2

i

yk(w⃗ · (x⃗i − x⃗j) + b) ≥ 1 − ξk, ∀i, j = 1, ..,m

ξk ≥ 0, k = 1, ..,m2

(2.22)

yk = 1 if rank(x⃗i) > rank(x⃗j), 0 otherwise, where k = i × m + j

whose the main characteristics are:

- The constraint yi(w⃗ · x⃗i + b) ≥ 1 − ξi allows the point x⃗i to violate the

hard constraint of Problem 2.13 of a quantity equal to ξi. This is clearly

shown by the outliers in Figure 2.14, e.g. x⃗i.

- If a point is misclassified by the hyperplane then the slack variable as-

sumes a value larger than 1. For example, Figure 2.14 shows the mis-

classified point xi and its associated slack variable ξi which is necessar-

ily > 1. Thus,
∑m

i=1 ξi is an upperbound to the number of errors. The

same property is held by the quantity,
∑m

i=1 ξ2
i , which can be used as an

alternative bound.

- The constant C tunes the trade-off between the classification errors and

the margin. The higher C is, the lower number of errors the optimal

solution commits. For C → ∞, Problem 2.22 approximates Problem

2.13.

- Similarly to the hard margin error probability upperbound, it can be

proven that minimizing ||w⃗|| + C
∑m

i=1 ξ2
i minimizes the error proba-

bility of classifiers which are not perfectly consistent with the training

data, e.g. they do not necessarily classify correctly all the training data.



Concept Segmentation and 
Classification task

Given a transcription, i.e. a sequence of words, 
chunk and label subsequences with concepts
Air Travel Information System (ATIS)

Dialog systems answering user questions
Conceptually annotated dataset
Frames



An example of concept annotation in 
ATIS

User request: list TWA flights from Boston to 
Philadelphia

The concepts are used to build rules for the dialog 
manager (e.g. actions for using the DB)

from location
to location
airline code



Our Approach 
(Dinarelli, Moschitti, Riccardi, SLT 2008)

Use of Finite State Transducer to generate word 
sequences and concepts
Probability of each annotation

Þ m best hypothesis can be generated
Idea: use a discriminative model to choose the 
best one

Re-ranking and selecting the top one



Experiments

Luna projects’ Corpus Wizard of OZ



Re-ranking Model

The FST generates the most likely concept 
annotations.
These are used to build annotation pairs,          .

positive instances if si more correct than sj,

The trained binary classifier decides if si is more 
accurate than sj. 
Each candidate annotation si is described by a 
word sequence where each word is followed by 
its concept annotation. 

€ 

si, s j



Re-ranking framework



Example

I have a problem with the network card now

si: I NULL have NULL a NULL problem 

PROBLEM-B with NULL my NULL monitor 

HW-B

sj: I NULL have NULL a NULL problem HW-B
with NULL my NULL monitor



Flat tree representation



Multilevel Tree



Enriched Multilevel Tree



Results

Model Concept Error Rate

SVMs 26.7

FSA 23.2

FSA+Re-Ranking 16.01

≈ 30% of error reduction of 
the best model



Structured Perceptron



Structured Output Prediction 
with 

Structural Support Vector Machines

Thorsten Joachims

Cornell University
Department of Computer Science

Joint work with 
T. Hofmann, I. Tsochantaridis, Y. Altun (Brown/Google/TTI)
T. Finley, R. Elber, Chun-Nam Yu, Yisong Yue, F. Radlinski

P. Zigoris, D. Fleisher (Cornell)



Supervised Learning
• Assume: Data is i.i.d. from

• Given: Training sample

• Goal: Find function from input space X to output space Y

with low risk / prediction error

• Methods: Kernel Methods, SVM, Boosting, etc.

Complex objects



Examples of Complex Output Spaces
• Natural Language Parsing

– Given a sequence of words x, predict the parse tree y.
– Dependencies from structural constraints, since y has to be a 

tree.

The dog chased the catx
S

VPNP

Det NV
NP

Det N

y



Examples of Complex Output Spaces
• Protein Sequence Alignment

– Given two sequences x=(s,t), predict an alignment y.
– Structural dependencies, since prediction has to be a valid 

global/local alignment. 

x y

AB-JLHBNJYAUGAI

BHJK-BN-YGU

s=(ABJLHBNJYAUGAI)

t=(BHJKBNYGU)



Examples of Complex Output Spaces
• Information Retrieval

– Given a query x, predict a ranking y.
– Dependencies between results (e.g. avoid redundant hits)
– Loss function over rankings (e.g. AvgPrec)

SVMx 1. Kernel-Machines
2. SVM-Light
3. Learning with Kernels
4. SV Meppen Fan Club
5. Service Master & Co.
6. School of Volunteer Management
7. SV Mattersburg Online
…

y



Examples of Complex Output Spaces
• Noun-Phrase Co-reference

– Given a set of noun phrases x, predict a clustering y.
– Structural dependencies, since prediction has to be an 

equivalence relation. 
– Correlation dependencies from interactions.

x y

The policeman fed

the cat. He did not know

that he was late.

The cat is called Peter.

The policeman fed

the cat. He did not know

that he was late.

The cat is called Peter.



Examples of Complex Output Spaces
• and many many more:

– Sequence labeling (e.g. part-of-speech tagging, named-entity 
recognition) [Lafferty et al. 01, Altun et al. 03] 

– Collective classification (e.g. hyperlinked documents) [Taskar 
et al. 03]

– Multi-label classification (e.g. text classification) [Finley & 
Joachims 08]

– Binary classification with non-linear performance measures 
(e.g. optimizing F1-score, avg. precision) [Joachims 05]

– Inverse reinforcement learning / planning (i.e. learn reward 
function to predict action sequences) [Abbeel & Ng 04]



Overview
• Task: Discriminative learning with complex outputs
• Related Work

– SVM algorithm for complex outputs
• Predict trees, sequences, equivalence relations, alignments
• General non-linear loss functions
• Generic formulation as convex quadratic program

– Training algorithms
• n-slack vs. 1-slack formulation
• Correctness and sparsity bound

– Applications
– Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
– Diversification of retrieval results in search engines [w/ Yisong Yue]
– Supervised clustering [w/ Thomas Finley]

• Conclusions



Why Discriminative Learning for 
Structured Outputs?

• Important applications for which conventional methods don’t fit!
– Diversified retrieval [Carbonell & Goldstein 98] [Chen & Karger 06]
– Directly optimize complex loss functions (e.g. F1, AvgPrec)

• Direct modeling of problem instead of reduction!
– Noun-phrase co-reference: two step approach of pair-wise classification 

and clustering as post processing (e.g. [Ng & Cardie, 2002])
• Improve upon prediction accuracy of existing generative methods!

– Natural language parsing: generative models like probabilistic context-
free grammars

– SVM outperforms naïve Bayes for text classification [Joachims, 1998] 
[Dumais et al., 1998]

• More flexible models!
– Avoid generative (independence) assumptions
– Kernels for structured input spaces and non-linear functions

Precision/Recall 
Break-Even Point Naïve Bayes Linear SVM

Reuters 72.1 87.5

WebKB 82.0 90.3

Ohsumed 62.4 71.6



Related Work
• Generative training (i.e. model P(Y,X))

– Hidden-Markov models
– Probabilistic context-free grammars
– Markov random fields
– etc.

• Discriminative training (i.e. model P(Y|X) or minimize risk)
– Multivariate output regression [Izeman, 1975] [Breiman & Friedman, 

1997]
– Kernel Dependency Estimation [Weston et al. 2003]
– Transformer networks [LeCun et al, 1998]
– Conditional HMM [Krogh, 1994]
– Conditional random fields [Lafferty et al., 2001]
– Perceptron training of HMM [Collins, 2002]
– Maximum-margin Markov networks [Taskar et al., 2003]
– Structural SVMs [Altun et al. 03] [Joachims 03] [TsoHoJoAl04]



Overview
• Task: Discriminative learning with complex outputs
• Related Work
• SVM algorithm for complex outputs

– Predict trees, sequences, equivalence relations, alignments
– General non-linear loss functions
– Generic formulation as convex quadratic program

• Training algorithms
– n-slack vs. 1-slack formulation
– Correctness and sparsity bound

• Applications
– Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
– Diversification of retrieval results in search engines [w/ Yisong Yue]
– Supervised clustering [w/ Thomas Finley]

• Conclusions



Classification SVM [Vapnik et al.]
• Training Examples:

• Hypothesis Space: 

• Training: Find hyperplane             with minimal 

Hard Margin
(separable)

Soft Margin
(training error)d

d
d

Dual Opt. Problem:

Primal Opt. Problem:



Challenges in Discriminative Learning with 
Complex Outputs

• Approach: view as multi-class classification task
– Every complex output                is one class

• Problems:
– Exponentially many classes!

• How to predict efficiently?
• How to learn efficiently?

– Potentially huge model!
• Manageable number of features?

The dog chased the catx
S VPNP

Det NV
NP

Det N

y2

S VPVP

Det NV
NP

V N

y1

S
NP

VP

Det NV
NP

Det N

yk

…



Multi-Class SVM [Crammer & Singer]
• Training Examples:

• Hypothesis Space:

The dog chased the catx

S VPNP

Det NV
NP

Det N

y1

S VPVP

Det NV
NP

V N

y2

S
NP

VP

Det NV
NP

Det N

y58

S VPNP

Det NV
NP

Det N

y12

S VPNP

Det NV
NP

Det N

y34

S VPNP

Det NV
NP

Det N

y4

Training: Find                       that solve

Problems
• How to predict efficiently?
• How to learn efficiently?
• Manageable number of parameters?



Joint Feature Map

The dog chased the catx

S VPNP

Det NV
NP

Det N

y1

S VPVP

Det NV
NP

V N

y2

S
NP

VP

Det NV
NP

Det N

y58

S VPNP

Det NV
NP

Det N

y12

S VPNP

Det NV
NP

Det N

y34

S VPNP

Det NV
NP

Det N

y4

• Feature vector             that describes match between x and y
• Learn single weight vector and rank by

Problems
• How to predict efficiently?
• How to learn efficiently?
• Manageable number of parameters?



Joint Feature Map for Trees
• Weighted Context Free Grammar

– Each rule     (e.g.                      )  has a weight 
– Score of a tree is the sum of its weights
– Find highest scoring tree 

The dog chased the cat

S
VPNP

Det NV
NP

Det N

The catthechaseddog catN
chasedV
dogN
theDet
dogDet

NPVVP
NDetNP

NPS
VPNPS
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ö
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ç
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è

æ

=F

1
1
1
2
0

1
2
0
1

),( !yx

x

y
YXf ®:

CKY Parser
VPNPS®

Problems
• How to predict efficiently?
• How to learn efficiently?
• Manageable number of parameters?



Structural Support Vector Machine
• Joint features               describe match between x and y
• Learn weights     so that                      is max for correct y

…

Hard-margin optimization problem:



Loss Functions: Soft-Margin Struct SVM
• Loss function                measures match between target and 

prediction.

…Lemma: The training loss is upper bounded by

Soft-margin optimization problem:



Experiment: Natural Language Parsing
• Implemention

– Incorporated modified version of Mark Johnson’s CKY parser
– Learned weighted CFG with

• Data
– Penn Treebank sentences of length at most 10 (start with POS)
– Train on Sections 2-22: 4098 sentences
– Test on Section 23: 163 sentences

– more complex features [TaKlCoKoMa04] 

[TsoJoHoAl04]



Generic Structural SVM
• Application Specific Design of Model

– Loss function
– Representation

è Markov Random Fields [Lafferty et al. 01, Taskar et al. 04]
• Prediction:  

• Training:

• Applications: Parsing, Sequence Alignment, Clustering, etc.



Reformulation of the Structural SVM QP
n-Slack Formulation: [TsoJoHoAl04]



Reformulation of the Structural SVM QP

1-Slack Formulation:

n-Slack Formulation:

ó
[JoFinYu08]

[TsoJoHoAl04]



Cutting-Plane Algorithm for 
Structural SVM (1-Slack Formulation)

• Input:                                        
•
• REPEAT

– FOR
– Compute

– ENDFOR
– IF

– optimize StructSVM over
– ENDIF

• UNTIL     has not changed during iteration

_

[Jo06] [JoFinYu08]

Add constraint 
to working set

Find most 
violated 

constraint

Violated 
by more 
than e ?



Polynomial Sparsity Bound
• Theorem: The cutting-plane algorithm finds a solution to 

the Structural SVM soft-margin optimization problem in the 
1-slack formulation after adding at most

constraints to the working set S, so that the primal 
constraints are feasible up to a precision    and the objective 
on S is optimal. The loss has to be bounded                          , 
and                         .
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[Jo03] [Jo06] [TeoLeSmVi07] [JoFinYu08]



Empirical Comparison: Different Formulations
Experiment Setup: 

– Part-of-speech tagging on Penn Treebank corpus
– ~36,000 examples, ~250,000 features in linear HMM model

[JoFinYu08]



Applying StructSVM to New Problem
• General

– SVM-struct algorithm and implementation
http://svmlight.joachims.org

– Theory (e.g. training-time linear in n)
• Application specific

– Loss function
– Representation
– Algorithms to compute 

• Properties
– General framework for discriminative learning
– Direct modeling, not reduction to classification/regression
– “Plug-and-play” 



Overview
• Task: Discriminative learning with complex outputs
• Related Work
• SVM algorithm for complex outputs

– Predict trees, sequences, equivalence relations, alignments
– General non-linear loss functions
– Generic formulation as convex quadratic program

• Training algorithms
– n-slack vs. 1-slack formulation
– Correctness and sparsity bound

• Applications
– Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
– Diversification of retrieval results in search engines [w/ Yisong Yue]
– Supervised clustering [w/ Thomas Finley]

• Conclusions



Comparative Modeling of Protein Structure
• Goal: Predict structure from sequence

h(“APPGEAYLQV”)         à

• Hypothesis: 
– Amino Acid sequences for into structure with lowest energy
– Problem: Huge search space (> 2100 states)

• Approach: Comparative Modeling
– Similar protein sequences fold into similar shapes 

à use known shapes as templates
– Task 1: Find a similar known protein for a new protein

h(“APPGEAYLQV”,            )   à yes/no
– Task 2: Map new protein into known structure

h(“APPGEAYLQV”,            )   à [Aà3,Pà4,Pà7,…]
– Task 3: Refine structure

[Jo03, JoElGa05,YuJoEl06]



Linear Score Sequence Alignment
Method: Find alignment y that maximizes linear score

Example:
– Sequences:

s=(A B C D)
t=(B A C C)

– Alignment y1:
A B C D
B A C C à score(x=(s,t),y1) = 0+0+10-10 = 0

– Alignment y2:
- A B C D
B A C C - à score(x=(s,t),y2) = -5+10+5+10-5 = 15

Algorithm: Solve argmax via dynamic programming.

A B C D -
A 10 0 -5 -10 -5
B 0 10 5 -10 -5
C -5 5 10 -10 -5
D -10 -10 -10 10 -5
- -5 -5 -5 -5 -5



Predicting an Alignment
Protein Sequence to Structure Alignment (Threading)

– Given a pair x=(s,t) of new sequence s and known structure t, 
predict the alignment y.

– Elements of s and t are described by features, not just 
character identity.

x y
ββ-βλλββλλααααα
32-401450143520 
AB-JLHBNJYAUGAI

BHJK-BN-YGU  
ββλλ-ββ-λλα

βββλλββλλααααα
32401450143520 
ABJLHBNJYAUGAI

BHJKBNYGU 
ββλλββλλα

( )
( )( )
( )

[YuJoEl07]



Scoring Function for Vector Sequences
General form of linear scoring function:

à match/gap score can be arbitrary linear function
à argmax can still be computed efficiently via dynamic 

programming
Estimation:

– Generative estimation (e.g. log-odds, hidden Markov model)
– Discriminative estimation via structural SVM

[YuJoEl07]



Loss Function and Separation Oracle
• Loss function:

– Q loss: fraction of incorrect alignments
• Correct alignment    y=

à ΔQ(y,y’)=1/3
• Alternate alignment y’=

– Q4 loss: fraction of incorrect alignments outside window
• Correct alignment    y=

à ΔQ4(y,y’)=0/3
• Alternate alignment y’=

• Separation oracle: 
– Same dynamic programming algorithms as alignment

- A B C D
B A C C -

A - B C D
B A C C -

- A B C D
B A C C -

A - B C D
B A C C -

[YuJoEl07]



Experiment
• Train set [Qiu & Elber]: 

– 5119 structural alignments for training, 5169 structural alignments for 
validation of regularization parameter C

• Test set: 
– 29764 structural alignments from new deposits to PDB from June 

2005 to June 2006.
– All structural alignments produced by the program CE by 

superimposing the 3D coordinates of the proteins structures. All 
alignments have CE Z-score greater than 4.5.

• Features (known for structure, SABLE predictions for sequence):
– Amino acid identity (A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y)
– Secondary structure (α,β,λ)
– Exposed surface area (0,1,2,3,4,5)

[YuJoEl07]



Experiment Results
Models:
• Simple: Ф(s,t,yi) ó (A|A; A|C; …;-|Y; α|α; α|β…; 0|0; 0|1;…)
• Anova2: Ф(s,t,yi) ó (Aα|Aα…; α0|α0…; A0|A0;…)
• Tensor: Ф(s,t,yi) ó (Aα0|Aα0; Aα0|Aα1; …)
• Window: Ф(s,t,yi) ó (AAA|AAA; …; ααααα|ααααα; …; 00000|00000;…)

Q-Score # Features Test
Simple 1020 39.89
Anova2 49634 44.98
Tensor 203280 42.81
Window 447016 46.30

Q-score when optimizing to Q-loss

[YuJoEl07]

Q4-score Test
BLAST 28.44
SVM (Window) 70.71
SSALN [QiuElber] 67.30
TM-align [ZhaSko] (85.32)

Q4-score when optimizing to Q4-loss

Ability to train complex models? Comparison against other methods?
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Diversified Retrieval
• Ambiguous queries:

– Example query: “SVM” 
• ML method
• Service Master Company
• Magazine
• School of veterinary medicine
• Sport Verein Meppen e.V.
• SVM software
• SVM books 

– “submodular” performance measure
è make sure each user gets at least 

one relevant result 
• Learning Queries:

– Find all information about a topic
– Eliminate redundant information

Query: SVM

1. Kernel Machines

2. SVM book

3. SVM-light

4. libSVM

5. Intro to SVMs

6. SVM application list

7. …

Query: SVM

1. Kernel Machines

2. Service Master Co

3. SV Meppen

4. UArizona Vet. Med.

5. SVM-light

6. Intro to SVM 

7. …

[YueJo08]



Approach
• Prediction Problem:

– Given set x, predict size k subset y that satisfies most users.
• Approach: Topic Red. ¼Word Red. [SwMaKi08]

– Weighted Max Coverage:

– Greedy algorithm is 1-1/e approximation [Khuller et al 97]
à Learn the benefit weights:

è
D6

D5

D7
x

y = { D1, D2, D3, D4 }

[YueJo08]

D4
D3

D2
D1



Features Describing Word Importance
• How important is it to cover word w

• w occurs in at least X% of the documents in x
• w occurs in at least X% of the titles of the documents in x
• w is among the top 3 TFIDF words of X% of the documents in x
• w is a verb

à Each defines a feature in
• How well a document d covers word w

• w occurs in d
• w occurs at least k times in d
• w occurs in the title of d
• w is among the top k TFIDF words in d

à Each defines a separate vocabulary and scoring function

[YueJo08]

D6D3
D5D1 D4

D7
D2

D6D3
D5D1 D4

D7
D2

D6D3
D5D1 D4

D7
D2

+ + … +



Loss Function and Separation Oracle
• Loss function: 

– Popularity-weighted percentage of subtopics not covered in y
àMore costly to miss popular topics

– Example:

• Separation oracle:
– Again a weighted max coverage problem

à add artificial word for each subtopic with percentage weight
– Greedy algorithm is 1-1/e approximation [Khuller et al 97]

[YueJo08]

D1 D9

D7D2
D4

D10D3
D12

D11
D8

D6



Experiments
• Data: 

– TREC 6-8 Interactive Track
– Relevant documents manually labeled by subtopic
– 17 queries (~700 documents), 12/4/1 training/validation/test
– Subset size k=5, two feature sets (div, div2)

• Results:
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– Supervised clustering [w/ Thomas Finley]
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Learning to Cluster
• Noun-Phrase Co-reference

– Given a set of noun phrases x, predict a clustering y.
– Structural dependencies, since prediction has to be an 

equivalence relation. 
– Correlation dependencies from interactions.

x y

The policeman fed

the cat. He did not know

that he was late.

The cat is called Peter.

The policeman fed

the cat. He did not know

that he was late.

The cat is called Peter.



Struct SVM for Supervised Clustering
• Representation

–

– y is reflexive (yii=1), symmetric (yij=yji), and transitive (if yij=1 and 
yjk=1, then yik=1)

– Joint feature map
• Loss Function

–
• Prediction

–
– NP hard, use linear relaxation instead [Demaine & Immorlica, 2003]

• Find most violated constraint
–
– NP hard, use linear relaxation instead [Demaine & Immorlica, 2003]

1   1   1   1   0   0   0
1   1   1   1   0   0   0
1   1   1   1   0   0   0
1   1   1   1   0   0   0
0   0   0   0   1   1   1
0   0   0   0   1   1   1
0   0   0   0   1   1   1

y

1   1   1   1   0   0   0
1   1   1   1   0   0   0
1   1   1   1   0   0   0
1   1   1   1   0   0   0
0   0   0   0   1   1   1
0   0   0   0   1   1   1
0   0   0   0   1   1   1

y 1   1   1   0 0   0   0
1   1   1   0 0   0   0
1   1   1   0 0   0   0
0   0   0 1   0   0   0
0   0   0   0   1   1   1
0   0   0   0   1   1   1
0   0   0   0   1   1   1

y’

[FiJo05]



Summary and Conclusions
• Learning to predict complex output

– Directly model machine learning application end-to-end
• An SVM method for learning with complex outputs

– General method, algorithm, and theory
– Plug in representation, loss function, and separation oracle
– More details and further work:

• Diversified retrieval [Yisong Yue, ICML08]
• Sequence alignment [Chun-Nam Yu, RECOMB07, JCB08]
• Supervised k-means clustering [Thomas Finley, forthcoming]
• Approximate inference and separation oracle [Thomas Finley, ICML08]
• Efficient kernelized structural SVMs [Chun-Nam Yu, KDD08]

• Software: SVMstruct

– General API 
– Instances for sequence labeling, binary classification with non-linear loss, 

context-free grammars, diversified retrieval, sequence alignment, ranking
– http://svmlight.joachims.org/



PART II: Basics of Natural Language 
Processing



Part-of-Speech tagging

Given a sentence W1…Wn and a tagset of lexical 
categories, find the most likely tag T1..Tn for each word in 
the sentence
Example
Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NN
People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN 

the/DT race/NN for/IN outer/JJ space/NN

Note that many of the words may have unambiguous tags
But enough words are either ambiguous or unknown that it’s a 
nontrivial task



Part Of Speech (POS) Tagging

Annotate each word in a sentence with a part-of-
speech.

Useful for subsequent syntactic parsing and word sense 
disambiguation.

I     ate   the  spaghetti  with   meatballs.  
Pro  V   Det N       Prep        N

John  saw the  saw and  decided  to take  it     to the   table.
PN      V   Det N   Con      V     Part  V   Pro Prep Det N



PTB Tagset (36 main tags + punctuation 
tags) 



Solution

Text Classifier:
Tags categories
Features windows of words around the target word
N-grams



Named Entity Recognition

NE involves identification of proper names in texts, 
and classification into a set of predefined categories 
of interest.
Three universally accepted categories: person, 
location and organisation
Other common tasks: recognition of date/time 
expressions, measures (percent, money, weight etc), 
email addresses etc.
Other domain-specific entities: names of drugs, 
medical conditions, names of ships, bibliographic 
references etc.



Problems in NE Task Definition

Category definitions are intuitively quite clear, 
but there are many grey areas.
Many of these grey area are caused by 
metonymy.

Organisation vs. Location : “England won the 
World Cup” vs. “The World Cup took place in 
England”.
Company vs. Artefact: “shares in MTV” vs. 
“watching MTV”

Location vs. Organisation: “she met him at 
Heathrow” vs. “the Heathrow authorities”



NEs

gazetteertokeniser NE
grammar

documents

NE System Architecture



Approach con’t

Again Text Categorization
N-grams in a window centered on the NER
Additional Features

Gazetteer
Word Capitalize
Beginning of the sentence
Is it all capitalized



Approach con’t
NE task in two parts:

Recognising the entity boundaries
Classifying the entities in the NE categories

Some work is only on one task or the other
Tokens in text are often coded with the IOB scheme 

O – outside, B-XXX – first word in NE, I-XXX – all other words 
in NE
Easy to convert to/from inline MUC-style markup
Argentina B-LOC
played O
with O
Del B-PER
Bosque I-PER



WordNet

Developed at Princeton by George Miller and his 
team as a model of the mental lexicon.
Semantic network in which concepts are defined 
in terms of relations to other concepts.
Structure:

organized around the notion of synsets (sets of 
synonymous words)
basic semantic relations between these synsets
Initially no glosses
Main revision after tagging the Brown corpus with word 
meanings: SemCor.
http://www.cogsci.princeton.edu/~wn/w3wn.html



Structure

{vehicle}

{conveyance; transport}

{car; auto; automobile; machine; motorcar}

{cruiser; squad car; patrol car; police car; prowl car} {cab; taxi; hack; taxicab; }

{motor vehicle; automotive vehicle}
{bumper}

{car door}

{car window}

{car mirror}

{hinge; flexible joint}

{doorlock}

{armrest}

hyperonym

hyperonym

hyperonym

hyperonymhyperonym

meronym

meronym

meronym

meronym

 



Syntactic Parsing



•296

= 5



= 5



= 5



(or	Constituent	Structure)





Predicate Argument Structures



Shallow semantics from predicate 
argument structures

In an event:
target words describe relation among different entities
the participants are often seen as predicate's 
arguments.

Example:
a phosphor gives off electromagnetic energy in this 

form



Shallow semantics from predicate 
argument structures

In an event:
target words describe relation among different entities
the participants are often seen as predicate's 
arguments.

Example:
[ Arg0 a phosphor] [ predicate gives off] [ Arg1 electromagnetic 

energy] [ ArgM in this form]



Shallow semantics from predicate 
argument structures

In an event:
target words describe relation among different entities
the participants are often seen as predicate's 
arguments.

Example:
[ Arg0 a phosphor] [ predicate gives off] [ Arg1 electromagnetic 

energy] [ ArgM in this form]
[ ARGM When] [ predicate hit] [ Arg0 by electrons] [ Arg1 a 

phosphor] 



Example on Predicate Argument 
Classification

In an event:
target words describe relation among different entities
the participants are often seen as predicate's arguments.

Example:
Paul gives a talk in Rome



Example on Predicate Argument
Classification

In an event:
target words describe relation among different entities
the participants are often seen as predicate's arguments.

Example:
[ Arg0 Paul] [ predicate gives ] [ Arg1 a talk] [ ArgM in Rome]



Predicate-Argument Feature 
Representation

Given a sentence, a predicate p:

1. Derive the sentence parse tree
2. For each node pair <Np,Nx> 

a. Extract a feature representation set 
F

b. If Nx exactly covers the Arg-i, F is 
one of its positive examples

c. F is a negative example otherwise



Vector Representation for the linear kernel
 

Predicate 

S 

N 

NP 

D N 

VP 

V Paul 

in 

delivers 

a    talk 

PP 

IN N 

Rome 

Arg. 1 

Phrase Type

Predicate 
Word

Head Word

Parse Tree 
Path

Voice Active

Position Right



Question Answering



Basic Pipeline

Question Query 
Relevant 
Passages Answer 

Answer Type 
Ontologies 

Semantic Class of expected Answers 

 

Question 
Processing 

Paragraph 
Retrieval 

Answer extraction 
and formulation 

Document 
Collection 



Question Classification

Definition: What does HTML stand for?

Description: What's the final line in the Edgar Allan Poe 
poem "The Raven"?

Entity: What foods can cause allergic reaction in people?
Human: Who won the Nobel Peace Prize in 1992?
Location: Where is the Statue of Liberty?

Manner: How did Bob Marley die?
Numeric: When was Martin Luther King Jr. born?
Organization: What company makes Bentley cars?



Question Classifier based on Tree Kernels

Question dataset (http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)   
[Lin and Roth, 2005])

Distributed on 6 categories: Abbreviations, Descriptions, Entity, 
Human, Location, and Numeric.

Fixed split 5500 training and 500 test questions 
Using the whole question parse trees

Constituent parsing
Example

“What is an offer of direct stock purchase plan ?”



Syntactic Parse Trees (PT)



Similarity based on the number of 
common substructures

NP

D N

VP

V

hit

a phosphor



A portion of the substructure set



Explicit tree fragment space

zx
!!
!

  

! 

"(T
x
) =
! 
x = (0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

counts the number of common substructures

  

! 

"(T
z
) =
! 
z = (1,..,0,..,0,..,1,..,0,..,1,..,0,..,1,..,0,..,0,..,1,..,0,..,0)



Similarity based on WordNet



Question Classification with SSTK



A QA Pipeline: Watson Overview



Thank you
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