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Outline

= Natural Language tools and techniques
» Lemmatization
» POS tagging
* NER + gazetteer look up
» Dependency and Constituency trees
» Predicate Argument Structure

s Question Answering Pipeline

» Similarity for supporting answers
» QA tasks (open, restricted, factoid, non-factoid)




Motivations

= Approach to automatic Question Answering Systems

1. Extract query keywords from the question

2. Retrieve candidate passages containing such keywords (or
synonyms)

3. Select the most promising passage by means of query and
answer similarity

s For example

» Who is the President of the United States?
(Yes) The president of the United States is Barack Obama

(no) Glenn F. Tilton is President of the United Airlines
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Who is the President of the United States?

About 3,220,000,000 results (1.09 seconds)

Best guess for United States of America President is Barack

Obama
Mentioned on at least 3 websites including wikipedia.org,
whitehouse.gov and youtube.com - Show sources - Feedback

President of the United States - Wikipedia, the free encyclo...
en.wikipedia.org/wiki/President_of_the_United_States

Incumbent Barack Obama since January 20, 2009. Style, Mr.
President (informal) The Honorable (formal) His Excellency (diplomatic,
outside the U.S.) ...

= Origin - Powers and duties - Selection process - Compensation

List of Presidents of the United States - Wikipedia, the free ...
en.wikipedia.org/wiki/List_of Presidents_of_the_United_States

John F. Kennedy was the first president of Roman Catholic faith, and
the current president, Barack Obama, is the first president of African-
American descent; ...

The Presidents ! The White House

Alessal



Motivations

= TREC has taught that this model is to weak
s Consider a more complex task, i.e. a Jeopardy cue

s When hit by electrons, a phosphor gives off
electromagnetic energy in this form

» Solutions: photons/light

= What are the most similar fragments retrieved by a search
engine?




s Maps News Shopping Gmail more ~

[e When hit by electrons, a phosphor gives off electromagnetic energy

About 194,000 results (0.22 seconds) Advani

» Cathode-Ray Tube - body, used, chemical, characteristics, form ...
Sep 6, 2010 ... In order to form the electron beam into the correct shape, ... The actual
conversion of electrical energy to light energy takes place on the ... For example, the
phosphor known as yttrium oxide gives off a red glow ... complete explanation of electrostatic
and electromagnetic focusing in the crt ...
www.scienceclarified.com » Ca-Ch - Cached - Similar

Beta particle - Wikipedia, the free encyclopedia

Beta particles are high-energy, high-speed electrons or positrons emitted by certain ... The
beta particles emitted are a form of ionizing radiation also known as beta rays. ... by
electromagnetic interactions and may give off bremsstrahlung x-rays. ... The well-known
'betalight' contains tritium and a phosphor. ...

en.wikipedia.org/wiki/Beta particle - Cached - Similar

luminescence: Definition from Answers.com
Included on the electromagnetic spectrum are radio waves and microwaves; ... Though the

Sun sends its energy to Earth in the form of light and heat from the .... Thanks to the
phosphor, a fluorescent lamp gives off much more light than an ... The tube itself is coated




Motivations (2)

s [ his shows that:

» Lexical similarity is not enough

» Structure is required

s What kind of structures do we need?

= How to carry out structural similarity?




Information Retrieval Techniques




Indexing Unstructured Text

s Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia”

=« One could grep all of Shakespeare’ s plays for
Brutus and Caesar, then strip out lines
containing Calpurnia?
» Slow (for large corpora)

» NOT Calpurnia is non-trivial

» Other operations (e.g., find the word Romans near
countrymen) not feasible

» Ranked retrieval (best documents to return)




Term-document incidence

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
1if contains word, O otherwise

Brutus AND Caesar but NOT
Calpurnia




Incidence vectors

s SO0 we have a 0/1 vector for each term.

s [0 answer query: take the vectors for Brutus,

Caesar and Calpurnia (complemented) =
bitwise AND.

= 110100 AND 110111 AND 101111 = 100100.




Term-document incidence

Brutus, Caesar and
not Calpurnia

1 0 0 1 0 0
Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
1if contains word, 0 otherwise

Brutus AND Caesar but NOT
Calpurnia




Inverted index

For each term T, we must store a list of all
documents that contain T.

Do we use an array or a list for this?

Brutus 2 4 8 16||] 32| 64 |128
Calpurnia 1 2 3 5 8 13| 21
Caesar 13 | 16

What happens if the word Caesar is added to
document 14?

34




Inverted index

s Linked lists generally preferred to arrays

» Dynamic space allocation
¥ Insertion of terms into documents easy

» Space overhead of pointers -
(| Brutus 24816 —132— 64— 128
Calpurnia 112358 13 {21 —34
Caesar 13 116
- \_ )
s
Dictionary Postings lists

Sorted by doclID (more later on why).




Inverted index construction

Documents to
be indexed.

Token stream.

Tokenizer ]

Friends, Romans, countrymen.

More on
these later.

Modified tokens.

Inverted index.

Countrymen

@ Friends Romans
Linguistic modules ]
@ friend roman
[ Indexer ] friend
@ roman

countryman

countryman

2 4

12

13




Indexer steps

Term doclID
|

did
enact

= Sequence of (Modified token, Document ID) s

. caesar
pairs. |

was
killed
i
the
capitol
brutus
killed
me

Doc 1 Doc 2 0
— it

be
with

| did enact Julius So let it be with caesar

noble

Caesar | was killed Caesar. The noble .

hath

I' the Capitol; Brutus hath told you told

you

Brutus killed me. Caesar was ambitious caesar

NNNNNNNNNNNNNNND QA aaaaaaaa

was
ambitious




Term doclD

Term docID
' i 1 ambitious 2
did 1 be 2
‘er|1.act 1 brutus 1
julius
N Sort by te rl I lS . caesar 1 ggl:)ti?sl ?
| 1 caesar 1
was 1 caesar 2
killed 1 caesar 2
i 1 did 1
the 1 enact 1
capitol 1 hath 1
brutus 1 I 1
killed 1 | 1
me 1 * i 1
SO 2 it 2
let 2 julius 1
it 2 killed 1
be 2 killed 1
with 2 let 2
caesar 2 me 1
the 2 noble 2
noble 2 SO 2
brutus 2 the 1
hath 2 the 2
told 2 told 2
you 2 you 2
caesar 2 was 1
was 2 was 2
ambitious 2 with 2




Indexer steps: Dictionary & Postings

term doc. freq.

©
o
»n
=
-

o
»
7y
—
7

bt [ 1] —
. be 2 be | 1 — |2
= Multiple term brutus ] bratus | 2 - G-
° : : itol 1 itol | 1 — 1
entries in a single e e
caesar 2 I el R
2 did |1 — |1
document are cassar : I - B
t 1 | — |
merged. hath : hath | 1 ~ 2]
| 1 - [ ]
. . L. | 1 i1 —
= Splitinto Dictionary ! gy 1] - [L
. t it |1 — ]2
and Postings Kiled i julis -1
killed 1 - o [q]
D f ot ) killed — |1
s Doc. frequency me 1 et [ 1 =
. . . noble 2 me | 1 — [1]
information is so ‘ bl TT] _
added. tod ; o] 1 - 2
you 2 the 2| — ;—r
—P— .1_ od[1] - [
with 2 you | 1 — 12
Why frequency? was | 2 - [1]-
with | 1 — | 2]

— Will discuss later.




Where do we pay in storage?

term doc. freq. —
ambitious | 1 |
be | 1 —
brutus | 2

capitol

ostings lists

©

l

Lists of
doclDs

l
|

l

Pl
ERENNENNENERNERNERRRRNRN

caesar | 2
did | 1
enact | 1 |

Terms and \’::> hath | 1
counts i1
i1
it |1
julius
killed
let | 1
me | 1
noble | 1 |
so |1
the | 2
told | 1 |
you | 1 —
was | 2 | {bﬁ
with | 1 | —
Pointers

l
!

l

l

|

l

Ll
!

l




Query processing: AND

Consider processing the query:

Brutus AND Caesar
Locate Brutus in the Dictionary;

Retrieve its postings.

Locate Caesar in the Dictionary;

Retrieve its postings.

“Merge” the two postings:

2—4 » 8 — 16 — 32 > 64 > 128
« 1 22— 35— 8 13 — 21 > 34




The merge

Walk through the two postings simultaneously, in
time linear in the total number of postings entries

2 {4816 |32 —{64 —{128|  Brutus
12358 13 =21+ 34| Caesar

If the list lengths are x and y, the merge takes O(x+y)
operations.

Crucial: postings sorted by doclD.




Boolean queries: Exact match

s The Boolean Retrieval model is being able to ask a

guery that is a Boolean expression:

» Boolean Queries are queries using AND, OR and NOT to
join query terms
o Views each document as a set of words

o Is precise: document matches condition or not.

= Primary commercial retrieval tool for 3 decades.

s Professional searchers (e.g., lawyers) still like
Boolean queries:
* You know exactly what you’ re getting.




Evidence accumulation

m 1vs. 0occurrence of a search term

¥ 2vs.1occurrence
F 3vs. 2 occurrences, etc.
* Usually more seems better

s Need term frequency information in docs




Ranking search results

s Boolean queries give inclusion or exclusion of docs.

s Often we want to rank/group results

¥ Need to measure proximity from query to each doc.

¥ Need to decide whether docs presented to user are
singletons, or a group of docs covering various aspects of

the query.




IR vs. databases:
Structured vs unstructured data

» Structured data tends to refer to information in “tables”

Employee Manager Salary
Smith Jones 50000
Chang Smith 60000
lvy Smith 50000

Typically allows numerical range and exact match
(for text) queries, e.g.,
Salary < 60000 AND Manager = Smith.




Unstructured data

s Typically refers to free-form text

s Allows

¥ Keyword queries including operators

» More sophisticated “concept” queries, e.g.,
o find all web pages dealing with drug abuse

s Classic model for searching text documents




Semi-structured data

z In fact almost no data is “unstructured”

s E.g., this slide has distinctly identified zones such as
the Title and Bullets

s Facilitates “semi-structured” search such as

e Title contains data AND Bullets contain search

... to say nothing of linguistic structure




From Binary term-document incidence
matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector € {0,1}|V]




To term-document count matrices

s Consider the number of occurrences of atermin a

document:

¥ Each document is alcount vectorlin NV: a column below

Antony and Cleopatra  Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0
Caesar 232 227 0 2 1
Calpurnia 0 10 0 0 0
Cleopatra 57 0 0 0
mercy 3 5 5
worser 2 0 1 1 1




Bag of words model

s Vector representation doesn’ t consider the ordering
of words in a document

m John is quicker than Mary and Mary is quicker than
John have the same vectors

s Thisis called the bag of words model.

m In a sense, this is a step back: The positional index was
able to distinguish these two documents.




Term frequency tf

s The term frequency tf, ; of term tin document d is
defined as the number of times that t occurs in d.

m We want to use tf when computing query-document
match scores. But how?

s Raw term frequency is not what we want:

¢ A document with 10 occurrences of the term is more
relevant than a document with 1 occurrence of the term.

r But not 10 times more relevant.

s Relevance does not increase proportionally with term
frequency.




Log-frequency weighting

s The log frequency weight of termtindis

1+log,tt,,, 1ttt , >0
Wea = :
0, otherwise
0-0,1->1,2->1.3,10-> 2,1000 - 4, etc.

Score for a document-query pair: sum over terms tin
both g and d:

score — Zteqmd (1+logtt, ;)

The score is O if none of the query terms is present in
the document.




Document frequency

Rare terms are more informative than frequent terms

* Recall stop words

Consider a term in the query that is rare in the collection
(e.g., arachnocentric)

A document containing this term is very likely to be relevant
to the query arachnocentric

— We want a high weight for rare terms like

arachnocentric.




idf weight

s df,is the document frequency of t: the number of

documents that contain t

¥ df,is an inverse measure of the informativeness of t
e df, <N

s We define the idf (inverse document frequency) of t
by idf, =log,, (N/df))

¥ We use log (N/df,) instead of N/df, to “dampen” the effect
of idf.

Will turn out the base of the log is immaterial.




tf-idf weighting

The tf-idf weight of a term is the product of its tf weight
and its idf weight.

w =log(l+tf, ,)xlog,,(N/df,)

Best known weighting scheme in information retrieval

» Note: the “-” in tf-idf is a hyphen, not a minus sign!
e Alternative names: tf.idf, tf x idf

Increases with the number of occurrences within a
document

Increases with the rarity of the term in the collection




Score for a document given a query

Score(q,d) = E tf x1df, ,

reqgd

m There are many variants

¥ How “tf” is computed (with/without logs)
¥ Whether the terms in the query are also weighted




Binary = count - weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € R|V|




Documents as vectors

So we have a |V |-dimensional vector space
Terms are axes of the space
Documents are points or vectors in this space

Very high-dimensional: tens of millions of dimensions

when you apply this to a web search engine

These are very sparse vectors - most entries are zero.




Queries as vectors

s Keyidea 1: Do the same for queries: represent them
as vectors in the space

s Keyidea 2: Rank documents according to their
proximity to the query in this space
¥ proximity = similarity of vectors

¥ proximity = inverse of distance

¥ rank more relevant documents higher than less relevant
documents




Formalizing vector space proximity

First cut: distance between two points

¥ ( =distance between the end points of the two vectors)

Euclidean distance?
Euclidean distance is a bad idea . ..

.. . because Euclidean distance is large for vectors of
different lengths.




Why distance is a bad idea

The Euclidean distance
betweenq

and JZiS large even
though the

distribution of terms in
the query @ and the
distribution of

terms in the document

d, are

very similar.

GOSSIP

dh

1




Use angle instead of distance

s Thought experiment: take a document d and append
it to itself. Call this document d'.

s Semantically” d and d’ have the same content

m The Euclidean distance between the two documents
can be quite large

s The angle between the two documents is O,
corresponding to maximal similarity.

s Key idea: Rank documents according to angle with
query.




From angles to cosines

s The following two notions are equivalent.

¥ Rank documents in decreasing order of the angle between
query and document

¥ Rank documents in increasing order of cosine
(query,document)

s Cosine is a monotonically decreasing function for the
interval [0°, 180°]




Length normalization

m A vector can be (length-) normalized by dividing each
of its components by its length — for this we use the L,

norm: ~ .
Htz Y\ Zixi

s Dividing a vector by its L, norm makes it a unit (length)
vector (on surface of unit hypersphere)

ms Effect on the two documents d and d’ (d appended to
itself) from earlier slide: they have identical vectors
after length-normalization.

® Long and short documents now have comparable weights /




cosine(query,document)

Dot product
- 7 é\‘ C_l; é C_l; Z‘V‘ qul
cos(qg,d) = = e — = .

*Ei\_* ‘j‘J V] \/ v
dld ld NS a
qgi is the tf-idf weight of term i in the query

di is the tf-idf weight of term j in the document

cos(qg,d) is the cosine similarity of gand d ... or,
equivalently, the cosine of the angle between g and




Cosine for length-normalized vectors

s For length-normalized vectors, cosine similarity is

simply the dot product (or scalar product):

= v

cos(G.d)=G*d= ) qd,




Cosine similarity illustrated

POOR ~
11 v(d1)

/
fo
Y

|
-

o) 1




Performance Evaluation




Measures for a search engine

s We can quantify speed/size
s Quality of the retrieved documents

s Relevance measurement requires 3 elements:

1. A benchmark document collection
2. A benchmark suite of queries

3. A usually binary assessment of either Relevant or Non
relevant for each query and each document
o Some work on more-than-binary, but not the standard




Evaluating an IR system

s Note: the information need is translated into a query

s Relevance is assessed relative to the information
need not the query

s E.g., Information need: I'm looking for information on
whether drinking red wine is more effective at
reducing your risk of heart attacks than white wine.

s Query: wine red white heart attack effective

s Evaluate whether the doc addresses the information
need, not whether it has these words




Standard relevance benchmarks

s TREC - National Institute of Standards and Technology
(NIST) has run a large IR test bed for many years

s Reuters and other benchmark doc collections used

s Retrieval tasks” specified
F sometimes as queries

s Human experts mark, for each query and for each doc,
Relevant or Nonrelevant

* or at least for subset of docs that some system returned for
that query




Unranked retrieval evaluation:
Precision and Recall

s Precision: fraction of retrieved docs that are relevant
= P(relevant|retrieved)

s Recall: fraction of relevant docs that are retrieved

= P(retrieved|relevant)

Relevant Nonrelevant
Retrieved tp fp
Not Retrieved fn tn

m Precision P = tp/(tp + fp)
s Recall R=tp/(tp+1fn)




Should we instead use the accuracy
measure for evaluation?

s Given a query, an engine classifies each doc as
“Relevant” or “Nonrelevant”

s The accuracy of an engine: the fraction of these

classifications that are correct
F (tp+tn)/(tp+fp+fn+tn)

m Accuracy is a evaluation measure in often used in
machine learning classification work

s Why is this not a very useful evaluation measure in IR?




Performance Measurements

s Given a set of document T
s Precision = # Correct Retrieved Document / # Retrieved Documents

s Recall = # Correct Retrieved Document/ # Correct Documents

Retrieved
Documents
(by the system)

Correct
Documents

Correct
Retrieved
Documents
(by the system)




Why not just use accuracy?

s How to build a 99.9999% accurate search engine on a
low budget....

snOOQ[G?COm

Search for:

0 matching results found.

s People doing information retrieval want to find
something and have a certain tolerance for junk.




Precision/Recall trade-off

s You can get high recall (but low precision) by retrieving
all docs for all queries!

s Recall is a non-decreasing function of the number of
docs retrieved

m In a good system, precision decreases as either the
number of docs retrieved or recall increases

¥ This is not a theorem, but a result with strong empirical
confirmation




A combined measure: F

s Combined measure that assesses precision/recall
tradeoff is F measure (weighted harmonic mean):

1 ~(B*+DPR
- 2
05l+(1—05)l pP+R
P R

s People usually use balanced F; measure

¥ ie,withB=1lora=%

F =

s Harmonic mean is a conservative average

# See CJ van Rijsbergen, Information Retrieval




Evaluating ranked results

s Evaluation of ranked results:

¥ The system can return any number of results

» By taking various numbers of the top returned documents

(levels of recall), the evaluator can produce a precision-
recall curve




A precision-recall curve

1.0 -

0.8 -

0.6 -

0.4 -

Precision

0.2 -

0.0 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Recall

®61



Averaging over queries

s A precision-recall graph for one query isn’ t a very
sensible thing to look at

» You need to average performance over a whole bunch
of queries.

s But there’ s atechnical issue:

* Precision-recall calculations place some points on the graph

* How do you determine a value (interpolate) between the
points?




Evaluation

s Graphs are good, but people want summary measures!

¥ Precision at fixed retrieval level
@ Precision-at-k: Precision of top k results

o Perhaps appropriate for most of web search: all people want are
good matches on the first one or two results pages

@ But: averages badly and has an arbitrary parameter of k

¥ 11-pointinterpolated average precision

o The standard measure in the early TREC competitions: you take
the precision at 11 levels of recall varying from 0 to 1 by tenths
of the documents, using interpolation (the value for 0 is always
interpolated!), and average them

o Evaluates performance at all recall levels




Typical (good) 11 point precisions

s SablR/Cornell 8A1 11pt precision from TREC 8 (1999)

1 -
0.8 A

0.6 A

Precision

0.4 4

0.2 -

Recall




Yet more evaluation measures...

s Mean average precision (MAP)

® Average of the precision value obtained for the top k
documents, each time a relevant doc is retrieved

» Avoids interpolation, use of fixed recall levels
» MAP for query collection is arithmetic ave.

o Macro-averaging: each query counts equally
s R-precision

» If we have a known (though perhaps incomplete) set of

relevant documents of size Rel, then calculate precision of
the top Rel docs returned

» Perfect system could score 1.0.




TREC

s TREC Ad Hoc task from first 8 TRECs is standard IR task

»¥ 50 detailed information needs a year
¥ Human evaluation of pooled results returned
¥ More recently other related things: Web track, HARD

s ATREC query (TREC5)

<top>

<num> Number: 225

<desc> Description:

What is the main function of the Federal Emergency
Management Agency (FEMA) and the funding level provided
to meet emergencies? Also, what resources are available to
FEMA such as people, equipment, facilities?

</top>




Standard relevance benchmarks: Others

x GOV?2

¥ Another TREC/NIST collection
¥ 25 million web pages
» Largest collection that is easily available

» But still 3 orders of magnitude smaller than what
Google/Yahoo/MSN index

= NTCIR

» East Asian language and cross-language information
retrieval

s Cross Language Evaluation Forum (CLEF)

¥ This evaluation series has concentrated on European
languages and cross-language information retrieval.

s Many others




Text Categorization




Text Classification Problem

s Given:

» a set of target categories:
» the set T of documents, C = {Cl,..,C”}

define
f: T — 2¢
= VSM (Salton89’)

» Features are dimensions of a Vector Space.

» Documents and Categories are vectors of feature
weights.

» dis assignedto C'if d-C'>th




The Vector Space Model

d,: Politic d,: Sport d;:Economic

A Bush declares Totti scored in Berlusconi
Berlusconi gar' , the yesterday acquires
erlusconi match against Inzaghi
= gives support Berlusconi’s before
L Milan elections
“““ d,

C, : Politics
Category
C,: Sport
Category

Tott1




Automated Text Categorization

A corpus of pre-categorized documents

Split document in two parts:

» Training-set

» Test-set

Apply a supervised machine learning model to the
training-set

» Positive examples

» Negative examples

Measure the performances on the test-set
* e.g., Precision and Recall




Feature Vectors

s Each example is associated with a vector of n feature
types (e.g. unique words in TC)

x=@,.,,.0,.0,..,,.,0,.0,..,.0,.0, ..1,..0,.., 1)

acquisition  buy market sell  stocks

= The dot product X Zcounts the number of features in
common

= This provides a sort of similarity




Text Categorization phases

s Corpus pre-processing (e.g. tokenization, stemming)
s Feature Selection (optionally)

» Document Frequency, Information Gain, %, , mutual
information,...

= Feature weighting
» for documents and profiles

= Similarity measure
» between document and profile (e.g. scalar product)

s Statistical Inference
» threshold application

s Performance Evaluation
» Accuracy, Precision/Recall, BEP, f-measure,..




Feature Selection

Some words, i.e. features, may be irrelevant

For example, “function words” as: “the”, “on”,"those”...

]

Two benefits:

» efficiency
» Sometime the accuracy

Sort features by relevance and select the m-best




Statistical Quantity to sort feature

s Based on corpus counts of the pair

A 1s the number of documents in which both f and ¢ occur. 1.e. (f,c):

B 1s the number of documents in which only f occurs. 1.e. (f,¢):

C' 1s the number of documents in which only ¢ occurs. 1.e. (f,c):

D is the number of documents in which neither f nor c occur. i.e. (f,é):

N 1s the total number of documents.1.e. A+ B+ C + D.




Statistical Selectors

s Chi-square, Pointwise Ml and Ml

N x (AD — CB)?

X“(f.c) ~ (A+O)(B+D)(A+B)(C+D)
P(f.c

Pl = [O‘('P(f)(];lz(c)

‘MI((?,C) _ —ZP Jlog( P ZP (c|f)log( P

ZPCU’ )log(P




Profile Weighting:
the Rocchio’s formula

d . :
= W, the weightof f in d
» Several weighting schemes (e.g. TF * IDF, Salton 91°)

. 5} the profile weights of f in C;:

6’; =max{ 0, gd;wjf - ‘Tldgw]‘f }

= 1, the training documents in C'




Similarity estimation

s Given the document and the category representation

d = <a)d a)d>, C = <Qf1”gf>

L2700 T

s It can be defined the following similarity function (cosine
measure

3.0 ] ;a)]‘f x Q'
dx|c] Jdx|c]

Sd,i

= cos(d ,C’i) =

« disassignedto C'if d-C' >0




Clustering

v o n w—




Experiments

= Reuters Collection 21578 Apté split (Apt€94)

¥ 90 classes (12,902 docs)
» A fixed splitting between training and test set
» 9603 vs 3299 documents

s lokens
r about 30,000 different
s Other different versions have been used but ...

most of TC results relate to the 21578 Apté

» [Joachims 1998], [Lam and Ho 1998], [Dumais et al. 1998],
[Li Yamanishi 1999], [Weiss et al. 1999],

[Cohen and Singer 1999]...




A Reuters document- Acquisition Category

CRA SOLD FORREST GOLD FOR 76 MLN DLRS - WHIM CREEK

SYDNEY, April 8 - <Whim Creek Consolidated NL> said the
consortium it 1s leading will pay 76.55 mlin dlrs for the
acquisition of CRA Ltd's <CRAA.S> <Forrest Gold Pty Ltd> unit,
reported yesterday.

CRA and Whim Creek did not disclose the price yesterday.

Whim Creek will hold 44 pct of the consortium, while
<Austwhim Resources NL> will hold 27 pct and <Croesus Mining
NL> 29 pct, it said in a statement.

As reported, Forrest Gold owns two mines in Western
Australia producing a combined 37,000 ounces of gold a year. It
also owns an undeveloped gold project.




A Reuters document- Crude-Oil Category

FTC URGES VETO OF GEORGIA GASOLINE STATION BILL

WASHINGTON, March 20 - The Federal Trade Commission said
its staff has urged the governor of Georgia to veto a bill that
would prohibit petroleum refiners from owning and operating
retail gasoline stations.

The proposed legislation is aimed at preventing large oil
refiners and marketers from using predatory or monopolistic
practices against franchised dealers.

But the FTC said fears of refiner-owned stations as part of
a scheme of predatory or monopolistic practices are unfounded.
It called the bill anticompetitive and warned that it would
force higher gasoline prices for Georgia motorists.




Performance Measurements

s Given a set of document T
s Precision = # Correct Retrieved Document / # Retrieved Documents

s Recall = # Correct Retrieved Document/ # Correct Documents

Retrieved
Documents
(by the system)

Correct
Documents

Correct
Retrieved
Documents
(by the system)




Precision and Recall of C;

m A, corrects

s b, mistakes

The Precision and Recall are defined by the above counts:

(i;

a; + b;

Precision; =

a;

Recall; =
a; -+ C;




Performance Measurements (cont’d)

s Breakeven Point

¢ Find thresholds for which
Recall = Precision
» Interpolation

s f-measure

» Harmonic mean between precision and recall

= Global performance on more than two categories

» Micro-average
o The counts refer to classifiers
» Macro-average (average measures over all categories)




F-measure e MicroAverages

2 x Precision x Recall
Precision + Recall
mn
2 i=1 @i
T
Doy @
i=1 @i

mn
2 iy @i G

F =

pPrecision =

pRecall =

pPrecision + pRecall
2

d—

uBEP =

2 x pPrecision x pRecall

pfi =

pPrecision + pRecall




The Impact of p parameter on
Acquisition category

BEP 0,9 ‘
K
0,89

0,88

0,87 {":%

0,86

0,85 .

0,84

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15




The impact of p parameter on Trade
category

0,85

BEP

0,8

0,75

0,7

0,65

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
o,




N-fold cross validation

s Divide training set in n parts

* One is used for testing

» n-1 for training

= This can be repeated n times for n distinct test sets

s Average and Std. Dev. are the final performance index




Introduction to Machine Learning




What is Statistical Learning?

s Statistical Methods — Algorithms that learn
relations in the data from examples

s Simple relations are expressed by pairs of
variables: (x;,y1), (X5,V2),..., {X,,¥,)

s Learning f such that evaluate y given a new value

X, i.e. X, f(xX)) =, y)




You have already tackled the learning
problem




Linear Regression




Degree 2




Degree




Machine Learning Problems

s Overfitting

s How dealing with millions of variables instead of
only two?

s How dealing with real world objects instead of
real values?




Linear Classifiers




Linear Classifier (1)

= The equation of a hyperplane 1s
f(xX)=x-w+b=0, xweER"LENR
s X is the vector representing the classifying example

= Wwis the gradient to the hyperplane

s The classification function is
h(x) =sign( f(x)) @ @




Linear classifiers (2)

s Linear Functions are the simplest ones from an
analytical point of view.

s The basic idea is to select a hypothesis with null
error on the training-set.

s o learn a linear function a simple neural network
of only one neuron is enough (Perceptron)




An animal neuron

synapse 4




The Perceptron

@(x) = sgn( E W, X X, +b)
i=1..n




Useful Concepts

s Functional Margin of an example with respect to a
hyperplane: y; = y,(w*X, + b)
s The distribution of functional margins of a

hyperplane with respect to a training set S is the
distribution of the margins of the examples in(%%, Wyt

the hyperplane

s The functional margin of a hyperplane is the
minimum margin of the distribution




Notations (con’td)

= |f we normalize the hyperplane equation, i.e.

( w , b ) , we obtain the geometric margin

[wll [l w]

s The geometric margin measure the Euclidean distance
between the target point and the hyperplane.

s The training set Margin is the maximum geometric
(functional) margin among all hyperplanes which

separates the examples in S.

= The hyperplane associated with the above quantity is
called maximal margin hyperplane




Basic Concepts

Lo X'w
s From cos(X, W) = — ~
[ x|l w]
¥ 1t follows that
. L. XTW LW
| X || cos(x, W) =——=x"—
| wl | wl

® Norm of tin}%’s the cosine between and , 1i.e. the p}ﬁjection 0{[,"} on

B —_—

X w




Geometric Margin

W




Geometric margins of 2 points and hyperplane
margin

Geometric Margin Hyperplane Margin




ximal margin vs other margins
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Perceptron training on a data set
(on-line algorthm)

w, < 0;b, < 0;k <= O;R<— max__, Il X, |l

l=i=<l
Repeat
fori= 1tom
ify.(w, - X, +b,) =<0 then

—

Wi =W, +1Y.X,
b, =b, +ny.R’
k=k+1
endif
endfor
until no error 1s found

return k,(w,,b,)






















Novikofft’s Theorem

Let S be a non-trivial training-set and let

R = max || x, .

i=1,...m

Let us suppose there is a vector w ,||w ||=1 and
yi(<w*9xi>+b*)2)/9 i=19"9m9

with ¥ > (. Then the maximum number of errors of the perceptron

1S:
2
R 2R
t=_9
(V)




Observations

= [he theorem states that independently of the margin size, if
data is linearly separable the perceptron algorithm finds the
solution in a finite amount of steps.

= This number is inversely proportional to the square of the
margin.

= The bound is invariant with respect to the scale of the
patterns (i.e. only the relative distances count).

= [he learning rate is not essential for the convergence.




Dual Representation

m The decision function can be rewritten as:

h(x)=sgn(w-Xx+b)=sgn( 2 ay X, ¥+b)=
j=l..m

sgn( E ay.X;*x+Db)

i=1..m

= as well as the updating function

if y.( E ay.X;-x;+b)<0then ;= +1
j=l..m
m The learning rate » only affects the re-scaling of the hyperplane,
it does not affect the algorithm, so we can fix n =1.




First properties of SVMs

m DUALITY 1s the first feature of Support Vector Machines
s SVMs are learning machines using the following function:

f(x)=sgn(w-X+b)=sgn( E a;y.X;"X+b)

j=l..m

s Note that data appears only as scalar product (for both testing
and learning phases)

s The Matrix G = ( XX )m is called Gram matrix

17i,j=1




Limits of Linear Classifiers

m Data must be linearly separable
m Noise (almost all classifier types)

m Data must be in vectorial format




Solutions

s Multi-Layers Neural Network: back-propagation learning
algorithm.

s SVMs: kernel methods.

The learning algorithm 1s decoupled by the application
domain which 1s encoded by a kernel function




Support Vector Machines




Which hyperplane choose?

a




Classifier with a Maximum Margin

Var,

IDEA 1: Select the
hyperplane with
maximum margin

v




Support Vector

Var,

Support Vectors

Margin




Support Vector Machine Classifiers

Var, .
The margin is equal to —




Support Vector Machines

Var,

The margin is equal to —

We need to solve

24

> +k, if X is positive

< -k, if x is negative




Support Vector Machines

Var,

There is a scale for
which k=1.

The problem transforms
in:

2

max

Ilw
w-Xx+b=+1, if x is positive
X+ b =-1, if x is negative




Final Formulation

2
ERTET 2

weX, +b=z+1, y, =1 — 1 I =
WX 4bs-l, y =-1 y,(w-x,+b)=1
ol ] V\;Ilz




Optimization Problem

s Optimal Hyperplane:
» Minimize T(W) = %vaHz
» Subjectto y. (w-X.)+b)=1i=1,..,m

= The dual problem is simpler




Soft Margin SVMs

Var,

&, slack variables are
added

Some errors are allowed
but they should penalize
the objective function




Soft Margin SVMs

The new constraints are

Vi .
i y.(w-x,+b)=1-§,

Vx, where & =0

The objective function
penalizes the incorrect
classified examples

N T,
min— 1 | +C2i§.

C is the trade-off
between margin and the
error 5%

l'..: & «




Dual formulation

= By deriving wrt y_{/,g and b




Final dual optimization problem

m - m -

1 S |
E ; — 3 E Yilj x4 (;l?zi © Ly —+ F()i]’)
i=1 ~ =1

a; >0, Yi=1,...m

Z;n:l y;o; = 0




Soft Margin Support Vector Machines

y(w-x,+b)y=1-§, Vx,
. =0

The algorithm tries to keep &; low and maximize the margin

1, -
min - 11 P +CY &,

NB: The number of error 1s not directly minimized (NP-complete

problem); the distances from the hyperplane are minimized

If C—oo, the solution tends to the one of the hard-margin algorithm
Attention !!!: if C=0we get || w||=0,since yb=1-& VX,

If C increases the number of error decreases. When C tends to

infinite the number of errors must be 0, 1.e. the hard-margin

formulation




Robusteness of Soft vs. Hard Margin SVMs

ﬂ A
Var, . Var,

Var, Var,

=y
=l
+
>
]
)

Soft Margin SVM Hard Margin SVM




Soft vs Hard Margin SVMs

s Soft-Margin has ever a solution
= Soft-Margin 1s more robust to odd examples

s Hard-Margin does not require parameters




Parameters

1, - 1, - + + _ -
min - 11 I +CY & = min -1 I +C YE +C Y E

_ min% dls +C(le§i+ +E,§i_)

s C: trade-off parameter

s J: cost factor




Kernel Methods




An example of kernel-based machine:
Perceptron training

—

1l x. I

1=<i<l I

W, < 6;]90 <— 0;k < 0; R <— max
do
fori= 1to/
if y,(w, X, +b,) <0 then
Wi =W, + VX,
b, =b, + 77)’iR2
k=k+1
endif
endfor
while an error 1s found

return k, (w,,b,)




Graphic interpretation of the Perceptron




Dual Representation for Classification

» |In each step of perceptron algorithm only training data is
added with a certain weight:

W= Eajy i*
j=1..0
s Hence the classification function results:

sgn(w* X + b) =sgn Eajyjic’j-)_c’+b
j=1..0
= Note that data only appears in the scalar product




Dual Representation for Learning

= as well as the updating function

ifyi(z ajyj)?j-)?i+b)s() then a. =a. +n

j=1..0

= The learning rate 1 only affects the re-scaling of the
hyperplane, it does not affect the algorithm, so we can fix

n=1




The main idea of Kernel Functions

s Mapping vectors in a space where they are linearly
separable, x — ¢(x)

-
-o

p——
-
-




Soft Margin optimization problem

m 1 m 1
Maxrimize ; @i~ 5 Z yiyjoucy (T - T + 55@')

ij=1
subject to o, >0, Vi=1,..m
D e Yic; =0




Kernels in Support Vector Machines

= |In Soft Margin SVMs we maximize:

Zaz -3 Z yzyjazaj it édw)

1,7=1

s By using kernel functions we rewrite the problem as:

1
maajzmzzez Oy — — Z yzygaz&j 027 OJ) —|— 05’6])

1,7=1

g
\
=

Vz =1,...m




Kernel Function Definition

Def. 2.26 A kernel is a function k, such thatV ©,Z € X
k(Z,2) = ¢(T) - p(7)

where @ is a mapping from X to an (inner product) feature space.

s Kernels are the product of mapping functions such as

ER",  F) =(¢(3),0,(F),....0, () ER"




The Kernel Gram Matrix

= The sole information used for training is the kernel Gram
matrix

_k(xlaxl) k(xnxz) k(xlaxm)_

X B k(X,,X))  k(Xp,X,) .. Kk(X,,X,)

training

k(Xx,,.X) k(X,.X,) .. k(x,,X,)

= |f the kernel is valid, K is symmetric positive-semidefinite
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Valid Kernels

Def. B.11 Eigen Values

Given a matrix A € R™ x R", an egeinvalue \ and an egeinvector T €
R™ — {0} are such that

AT = \x

Def. B.12 Symmetric Matrix
A square matrix A € R" xR" is symmetriciff A;; = Ajifori #ji=1,..,m
and j =1,..,n, ie iff A=A

Def. B.13 Positive (Semi-) definite Matrix
A square matrix A € R" x R" is said to be positive (semi-) definite if its
eigenvalues are all positive (non-negative).

*148




Valid Kernels cont’d

Proposition 1. (Mercer’s conditions)
Let X be a finite input space and let K(x,z) be a symmetric function on X. Then
K (x, z) is a kernel function if and only if the matrix

k(x,z) = ¢(x) - p(2)

is positive semi-definite (has non-negative eigenvalues).

= |f the matrix is positive semi-definite then we can find a
mapping ¢ implementing the kernel function

*149



Is it a valid kernel?

= It may not be a kernel so we can use MM

Proposition B.14 Let A be a symmetric matrix. Then A is positive (semi-)
definite iff for any vector T # 0

FAZ >N (>0).

From the previous proposition it follows that: If we find a decomposition
A in M'M, then A is semi-definite positive matrix as

TAT =2 M MZ = (MZ)(MZ) = Mz- MZ = ||MZ||* > 0.
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Valid Kernel operations

s K(x,z) = ky(X,2)+ky(X,2)
s K(x,z) = ky(X,2)*k,(X,2)
s K(x,Z) = a ky(X,2)

s K(x,z) = f(x)f(z)

s K(x,z) = x'Bz

= K(X,Z) = K1(9(x),9(2))




Object Transformation [Moschitti et al, CLJ 2008]

. K(Ovaz) = ¢(01)'¢(02) = ¢E(¢M (01))¢E(¢M (02))
= ¢E(Sl)'¢E(Sz) = KE(SDSZ)

= Canonical Mapping, ¢,/
» object transformation,

* e. (., asyntactic parse tree into a verb subcategorization
frame tree.

= Feature Extraction, (()
» maps the canonical structure in all its fragments
» different fragment spaces, e.g. String and Tree Kernels
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(for structured data)

Feature Spaces (35 min)

rnels

quence Kernels

el, Partial Tree kernel (PTK), Semantic
el, Smoothed PTK
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Linear Kernel

s In Text Categorization documents are word vectors

dd )=x=(0,.,1,.0,.0,.1,.0,.0,.1,.0,.0,.,1,..0,.1)

buy market sell stocks trade
dd)=z=(.,.1,.0,.1,.0,.0,..0,.1,.0,.0,.1,.0,.0)
buy company sell stock

» The dot product X :Z counts the number of features in
common

s This provides a sort of similarity
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Feature Conjunction (polynomial kernel)

= The initial vectors are mapped in a higher space
D(<x,x,>) — (xf:xzza\/lexzn‘/leﬂ/zxzal)

= More expressive, as (x,x,) encodes
Stock+Market vs. Downtown+Market features

= We can smartly compute the scalar product as

D(x) D(z) =
= (xlszzza'\/lexz,'\/le,'\/zxz,l) '(212,222,'\/52122,—\/521,—\/522,1) —
=Xz} +X;2; +2X,%,2,2, + 2X,2, + 2,2, + 1 =
=(xz, +x,z, +1)’ = (X Z+1)° = Kpy, (X, Z)
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Sub-hierarchies in WordNet

\
\
\
\

motorcar
compact

( {thing, entity} ]

/\

[{Iiving thing, organism}J [{non-living thing, ob]ect}]

[{plant.flora}] [{animal,fauna}] {{naturalobject}]

{substance}

[{person. human being}] [ {artifact} ] ( {food} J
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Similarity based on WordNet

Inverted Path Length:

Wu & Palmer:

Resnik:

Lin:

1
(1+d(c1,c2))

simrpr(c1,c2) =

simwup(ci,c2) =
2dep(lso(ci,c2))
d(c1,lso(c1,c2)) + d(ca,lso(c1,c2)) + 2dep(lso(ci, c2))

simres(c1,c2) = —log P(lso(c1, c2))

2 log P(lso(c1,c2))
log P(c1) + log P (c2)

SimLIN(Cl, C2) p—

*157



Document Similarity

Doc 1 Doc 2
industry @ —————_ _ _ _
~ g
~ —_— 7
~ - 7
\v/// /
— N 7
/// ~ //
—
telephone @+ >
\\\ 7 ~
\\\ \\
o~ —
// ~\\\\\\\
7 = O
/ -
e -
s -
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Lexical Semantic Kernels

= The document similarity is the following SK function:

SK(dy.dy) = Y s(w,.w,)

w,Ed, w,Ed,

= Where s is any similarity function between words, e.g.
WordNet [Basili et al.,2005] similarity or LSA [Cristianini et
al., 2002]

= Good results when training data is small
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String Kernel

Given two strings, the number of matches between their
substrings is evaluated

E.g. Bank and Rank

¥ B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..

r R, a,n,k, Ra, Ran, Rank, Rk, an, ank, nk,..
String kernel over sentences and texts

Huge space but there are efficient algorithms
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Using character sequences

¢("bank")=x=(0,...1,..,0,..1,..,0,.....1,..,0,...1,..,0,...1,..,0)
bank ank bnk bk b
o("rank"y=7=(1,..0,..0,..1,..0,.....0,..1,...0,..,1,..,0,...1)
rank ank rnk rk r

s X 'z counts the number of common substrings

= ¢("bank")- ¢("rank") = k("bank" " rank") .
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Formal Definition

82817--7S|5|9 _[: (il,...,ilul)

Z )\l(l) , where l(_)) = '\uy —11+ 1

[u= S[I
- quus - Pu(t) = Z Z Al(ﬁ) )\l(ﬁ):
uer* UER™ Fy=g]] Jiu=t[J]

= y: S: Z AUDHCT) , where ))F —

|
-
4

*162



Kernel between Bank and Rank

B, a, n, k, Ba, Ban, Bank, an, ank, nk, Bn, Bnk, Bk and ak are the
substrings of Bank.

R, a, n, k, Ra, Ran, Rank, an, ank, nk, Rn, Rnk, Rk and ak are the
substrings of Rank.
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An example of string kernel computation

- ¢a(Bank) = da(Rank) = A=+l — \(2=2+1)

bJ

A
A,
A

- ¢n(Bank) = ¢y (Rank) = A=t = \B=3+1)

- Ok(Bank) = (*)k(Rank) — /\(‘i1—i1-{—1) _ )\(4_4+1)

bJ

- ¢an(Bank) = ¢an(Rank) = Ai2=it+1) — \(3-2+1) — \2,
- Gank(Bank) = dank(Rank) = AB=itl) = \(4=2+1) — \3

- ¢nx(Bank) = dpx(Rank) = A2=itl) = \(@4=3+1) — )2

dax (Bank) = day (Rank) = A2=it+h) = \(4=241) — )3

K (Bank,Rank) = (A, A, A, A%, A%, A2, 0%)- (4, 4, A, A2, 0%, 4%, 0%)
— 3>\2 1L oM 9N
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Efficient Evaluation: Intuition

= Dynamic Programming technique over:
= The size of the two input strings, m, n and
= The size of their common substrings, p

= Evaluate the spectrum string kernels
s Substrings of size p
= Sum the contribution of the different p spectra
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Efficient Evaluation

Given two sequences sia and sob, we define:

|s1]| |s2]

Dp(Isal, |s2]) = > > Al I=lmr s S, (sa[1 4], s9[1: 7)),

i1=1 r=1

s1|1 : i] and sa[1 : r] are their subsequences from 1 to 7 and 1 to r.

A* x Dy(|s1],]s2]) if a = b;

0 otherwise.

SK,(s1a,s2b) = {

D, satisfies the recursive relation:

D,(k,l) = SK,_1(s1|1 : k], s2[1 :1]) + AD,(k,l — 1)+
+AD,(k—1,1) — N*Dy(k — 1,1 —1)
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Evaluating DP2

= Evaluate the weight of the string of size p in case a
character will be matched

= This is done by multiplying the double summation by the
number of substrings of size p-1

|51 |s2]

Dp(Jsal, |s2]) =) ) Alstlmitl2l=r s e, o (sq[1 2], so[1 2 7])

i1=1 r=1

*167




Tree kernels

s Syntactic Tree Kernel, Partial Tree kernel (PTK),
Semantic Syntactic Tree Kernel, Smoothed PTK

= Efficient computation

*168



Example of a parse tree

s ‘John delivers a talk in Rome”

S
S >N VP
/ \ ”
N VP
| /’ Q»VNFPP
Vv NP

John PP
VAR / \ PP>INN

delivers D N IN N
‘ ‘ I ‘ N — Rome

a talk 1n Rome

*169




The Syntactic Tree Kernel (STK)
[Collins and Duffy, 2002]

VP

7

V NP
/\
delivers D N

|
a talk
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The overall fragment set

VP VP VP VP NP NP NP
/N N
A ANV WA N |
D / delivers D N D N D N a  wlka talk
\ S AR G
2 a  talk a k1 \M L
/| Children are not d|V|ded Pa
V NP PV NP a
VT e Y e ey
b N'D N gelivers D/ \N delivers /\ | | / \
| | | b N delivers delivers D N
a talk \

a talk
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Explicit kernel space

p(r)=x=(,..,1,..0,...1,...0,..,1,..,0,..,1,..,0,...,1,..,0,..,1,..,0)
VP VP NP NP NP
/| /| STy N N o N
| N 2 N S A |
delivers D 1\|T D N Il) 1\|I & talk a talk
a talk a talk
¢(7—;) = Z = (19“903“909"919“909"919”909"919“909"909"919“909"90)
VP VP VP NP NP
| /| S w o) N
A\ NP Vv NP Vv NP | |
| | / \ / \ a  talk
delivers N D N Il) 1\|I
tallk a talk

—

s X -z counts the number of common substructures
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Efficient evaluation of the scalar product

X z2=¢(T) ¢(T)=K(T,.T) =

= 2 EA(nx,nZ)

n, €T, n, ETZ
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Efficient evaluation of the scalar product

X z2=¢(T) ¢(T)=K(T.T)=
= 2 EA(nx,nZ)

n, €T, n, ETZ

s [Collins and Duffy, ACL 2002] evaluate A in O(n?2):

A(n,,n_)=0, if the productions are different else

A(n,,n_)=1, 1if pre-terminals else

nc(n,)

A(n,.n)=| | A+Alch(n,, j).ch(n.. j))
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Other Adjustments

= Decay factor

A(n_,n_)=A, if pre-terminals else

nc(n, )

A(n,.n) =4[ [+ Ach(n,.j).ch(n..j))

s Normalization

K(T,.T)
JK(T,.T.) xK(T,,T,)

K(T.T) =
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Observations

s We can order the production rules used in T, and T,, at
loading time

= At learning time we can evaluate NP in
T.|+|T,| running time [Moschitti, EACL 2006]

s If 7. and T, are generated by only one production rule =
O(T.|x|T,|)...Very Unlikely!!!!
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Trees can also be program derivation trees

CODE

while (x <vy) {
X=x+1
y=y-1

}

AST

while

while

<

while

<

AST KERNEL

N
X y ~




Labeled Ordered Tree Kernel

s STK satisfies the constraint “remove 0 or all children at a
time”.

= |f we relax such constraint we get more general
substructures [Kashima and Koyanagi, 2002]

VP VP VP VP VP VP VP VP
e e | [ I
v NP \% NP NP NP NP NP NP NP
A — SN /N /N ]\
gives DN D D N D ND D N
I [ R | N NP NP
a talk a talk a talk a a / \ 7/

*178




Weighting Problems

VP
7
\Y NP

| / \

VP
7
v NP
VRN
gives ]l)IrI\II_]T

I

a tnath ltalk

VP
7
\Y NP
I/

: D N
gives | |

a talk

VP

e

M NP

/I

gves ply) N
T

a |bad ) talk

—

Both matched pairs give the same

contribution

Gap based weighting is needed
A novel efficient evaluation has to

be defined
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Partial Tree Kernel (PTK)
[Moschitti, ECML 2006]

s STK + String Kernel with weighted gaps on nodes’ children

VP VP VP VP VP VP VP VP
e e | I .
Vv NP Vv NP NP NP NP NP NP NP
| = SN /N /N
brought D N D N D N D ND D N
I [ N N B | NP NP NP
a cat a cat a cat a a / \ \ /
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Partial Tree Kernel - Definition

- if the node labels of ny and no are different then
A(ni,ng) = 0;

- else [(J1)

N D Y | ECREATE )

J1. o L(J1)=1(J2)
= By adding two decay factors we obtain:
[(J1)

“<>\2+ Z )\d(ji)—l-d(jz) H A(Cnl []—11]. Cns [];,]))

Ty, Ja,U(J1)=1(J3) =1
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Efficient Evaluation (1)

= In[Taylor and Cristianini, 2004 book], sequence kernels with
weighted gaps are factorized with respect to different

subsequence sizes
= We treat children as sequences and apply the same theory

A(nlv n2) — M()\Z - Z;ﬂil AP(Cnl ; an))

Given the two child sequences sja = ¢,,, and s20 = ¢,,,
(a and b are the last children), A,(s1a, s2b) = D

|.S‘1| |.S'2’

A(a,b) x Zz/\‘sl‘_”"”""’ X Ap_1(s1[1 ], s2[1:7])

1=1 r=1
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Efficient Evaluation (2)

A(CL, b)DI)(lsil’v ‘52D if a = b~

0 otherw:ise.

A, (s1a,s2b) = {

Note that D, satisfies the recursive relation:

Dp<k7 l) = A])_l(sl[l : k] 82[1 : l]) -+ )\Dp(k,l — 1)
+AD,(k—1,1) + N>D,(k — 1,1 —1).

» The complexity of finding the subsequences is O(p|s;||s])

)

= Therefore the overall complexity is O(pp?| N, || N7,
where p is the maximum branching factor (p = p)
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Running Time of Tree Kernel Functions

120 //
100 /
80 ® STK (fast)

A STK (slow)

g PTK (fast)
60

useconds

5 10 15 20 25 30 35 40 45 50 55
Number of Tree Nodes
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Syntactic/Semantic Tree Kernels (SSTK)
[Bloehdorn & Moschitti, ECIR 2007 & CIKM 2007]

o
N LI

D JJ] N

| | | |

a good talk a solid talk

= Similarity between the fragment leaves
» Tree kernel + Lexical Similarity Kernel

*185



Equations of SSTK

Definition 4 (Tree Fragment Similarity Kernel). For two tree fragments
f1, fo € F, we define the Tree Fragment Similarity Kernel as®:

nt(f1)
kF(f1, f2) = comp(f1, f2) H ks(f1(t), f2(t))
t=1

Tl,TQ Z Z A n1,n2

n1€NT n2€NT,

where A(ny,ng) = Zm Z'ﬂ Li(n1)Lj(n2) k= (fi, f5)-
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Example of an SSTK evaluation

VP VP
7 7 Ks(gives,gives)*Kg(a,a)*
i /NP\ i /NP\ K<(good,solid)*Ks(talk,talk)
S ) S y
giV@S D IJ N giVGS D J] N — 1 * 1 * 05 * 1 — 05
| | | |
a good talk a solid talk

Tl,TQ Z Z A n1,n2

n1€NT n2€NT,

where A(ny,ng) = Z’Zﬂl Z'ﬂ I;(n )I (n2)/ff(fuf3)
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Delta Evaluation is very simple

. if ny and ngy are pre-terminals and label(ni) = label(ns) then A(nq,no) =
Aks(chy ,chy, ),

ni?
. if the productions at n; and no are different then A(nq,n2) = 0;

. A(nl,ng) = )\,
- A(ng,ng) = AT (1 + A(chd, , ehi))).

]:1 ')’1,17
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Smoothed Partial Tree Kernels
[Moschitti, EACL 2009; Croce et al., 2011]

s Same idea of Syntactic Semantic Tree Kernel but the
similarity is extended to any node of the tree

= The tree fragments are those generated by PTK

s Basically it extends PTK with similarities
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Examples of Dependency Trees

= What is the width of a football field?
= What is the length of the biggest tennis court?

be

~ be
what -Idth length] 2

the of the of

field)

ai”ﬂ[foo'tball the blggest tennls]

\ /




Equation of SPTK

If n; and n, are leaves then A, (nq,n9)= uAo(ny,ng)

else

(I

Ag(n1,n2) =|po(n1,n2) X ()\2 + Z Nd(T)+d(F2) H Cnl

I, I, l(11)=1(12)

j=1

— Lexical Similarity

¢

— PTK
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Different versions of Computational
Dependency Trees for PTK/SPTK

be::v be::v
P e
what::w width::n 9.. what::w width::n ?::. ROOT VBZ
the(\of. -i SBIWP  the:d of::i PRD NN }A.
e felden NMOD DT field::n NMOD IN
- m I a::d football::n PMOD NN
a.. ootoall::n /\ /\
NMOD DT NMOD NN \

TOP

I e T A |

what::w be::v the::d width::n of::1 a::d football::n field::n ?::.
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Tree Kernel Efficiency

120

100

microseconds
(@) oo
o o

N
o

N
o

705

&LCT-PTK ’
% LCT-SPTK [ -

LPST-PTK / y = 0.081x"
_LPST-SPTK / /}/

¢1.213

el
X

<

I
o)
D
o))
®

>

¢
4
¢

30
Number of Nodes

50 6

0



f... sification with Kernels

mels (15 min)

‘? (QC) using constituency,
nantic structures

(QC) in Jeopardy!

vith kernels

srence Resolution
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IBM Watson (simplified) Pipeline

Question Question | ((/,_,ﬂ\)\
Classification | Trained |
Questi(/ Hypothesis} \ />rHypothesis and \ Candidate
Analys GenerationJ [Evidence Scoring Ranking
| . | | - J
Primary | |Candidate Supporting DGGD
Search Answer Evidence Ev1d§nce AHSVF.CI' and
Generation Retrieval Scoring Confidence

\_ , ~/

Evidence

Sources Sources
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Question Classification

s Definition: What does HTML stand for?

= Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

= Entity: What foods can cause allergic reaction in people?
= Human: Who won the Nobel Peace Prize in 19927

= Location: Where is the Statue of Liberty?

= Manner: How did Bob Marley die?

= Numeric: When was Martin Luther King Jr. born?

= Organization: What company makes Bentley cars?
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Question Classifier based on Tree Kernels

s Question dataset (http://12r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)
[Lin and Roth, 2005])

» Distributed on 6 categories: Abbreviations, Descriptions, Entity,
Human, Location, and Numeric.

s Fixed split 5500 training and 500 test questions

= Using the whole question parse trees

» Constituent parsing
» Example

“Who did deliver a talk?”
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Syntactic Parse Trees (PT)

SBARQ

WHNP 50

| |
WP VP !

did Y o

deliver [‘) N
a talk
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Some fragments from the VP subtree

VP VP VP
Y Y4 A VA WY
\% NP VvV NP VvV NP | |

VANV N

D

|

. a

delivers I|) T D N | | v p D
a  talk a  talk .| \

delivers D N a talk
\Y4

V|P VP VP VP VP >
ARVARARY S e N VP
\Y% /NP\ \ /NP\V NP\|/ /NP\ \l, P v NP v |
NP
Il) N'D I\|I delivers D N {elivers D/ \N | | / \

a talk

\ delivers delivers D N
a talk
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Explicit kernel space

o(T)=x=(,..,1,..0,..,1,...0,..,1,..0,...1,..,0,..,1,..,0,..,1,..,0)

VP VP VP NP NP NP
) /] 1N N L\
\Y% )9JI:\ \Y4 /;JI:\ vV j;in\ | | | |
delivers D 1\|T D N Il) 1\|I a talk a talk
a talk a talk
H(TH)=%=(1,..,0,.0,..,1,..0,..1,..,0,...1,...0,..,0,...,1,...0,...,0)
VP VP VP NP NP
/ | ya ya D/ \N D/ \N
Y NP vV NP VvV NP | |
| | /N / \ a talk
delivers N D N [|) 1\|] a
| a talk

talk

s x - z counts the number of common substructures
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Question Classification with SSTK

[Blohedorn&Moschitti, CIKM2007]

Syntactic Tree Kernel

(STK)
Accuracy

A parameter 0.4 | 0.05 | 0.01 [0.005]0.001
linear (bow) 0.905

—! Istring matching|0.890( 0.910 [0.914]|0.914|0.912
full 0.904/0.924]0.918 10.922 ] 0.920
full-ic 0.908]0.922]|0.916 [0.918 | 0.918

S path-1 0.90610.91810.912 10.918(0.916
path-2 0.89610.914 10.914 |0.916|0.916
lin 0.908]0.924|0.918 10.922]0.922
wup 0.90810.926(0.918 1 0.922 1 0.922

Syntactic Tree Kernel
with similarities (SSTK)
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Same Task with PTK, SPTK and
Dependency Trees

be::v be::v
P e
what::w width::n 9.. what::w width::n ?::. ROOT VBZ
the(\of. -i SBIWP the:d f:i  PRDNN PA
e felden NMOD DT field::n NMOD IN
- m I a::d football::n PMOD NN
a.. ootoall::n /\ /\
NMOD DT NMOD NN \

TOP

I e T A |

what::w be::v the::d width::n of::1 a::d football::n field::n ?::.
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State-of-the-art Results
[Croce et al., EMNLP 2011]

STK PTK  SPTK(LSA)
CT 91.20% 90.80%  91.00%

LOCT - 89.20% 93.20%
LCT - 90.80% 94.80 %
LPST - 89.40% 89.60%

BOW 88.80%
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Classification,
Ranking, Regression
and
Multiclassification




The Ranking SVM
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

The aim is to classify instance pairs as correctly

ranked or incorrectly ranked

» This turns an ordinal regression problem back into a binary
classification problem

We want a ranking function f such that

x; > x; iff f(x;) > f(x;)
... or at least one that tries to do this with minimal error
Suppose that fis a linear function

f(x;) = wex;




The Ranking SVM

s Ranking Model: f(x;)




The Ranking SVM

= Then (combining the two equations on the last
slide):

X; > x; iff wex; — wex; >0

x; > x; iff we(x; — x;) > 0

s Let us then create a new instance space from
such pairs: Z, = Xi— X

yk=+1’ _1 aSX,-Z, <Xk




Support Vector Ranking

[ min  g||d]|+C YL, €7
40 >1—&, Vi,j=1,.,m

.., m?

—

d yp(w - (T3 — 25)
\Sk‘zoa k:1,

yr = 1 if rank(z;) > rank(2;),-1otherwise, where k = ¢ X m + j

= Given two examples we build one example (x;, X))




Support Vector Regression (SVR)

t Solution:
f) | Sol
Min—w'w

Constraints:

y,—wx, —b<eg

T
wx +b—y <¢




Support Vector Regression (SVR)

J(x) “ Minimise:




Support Vector Regression

, 1
min —
w,b,&,E% 2

lwl* +C» (& +&)
1=1
st.yi—w x;—b<e+6&, &>0 V1I<i<n;

W xi+b—y <e+&, >0 Vi<i<n.

= );1snot -1 or 1 anymore, now 1t 1s a value

s £1s the tollerance of our function value




From Binary to Multiclass classifiers

= Three different approaches:

= ONE-vs-ALL (OVA)

» Given the example sets, {E1, E2, E3, ...} for the categories: {C1,
C2, C3,...} the binary classifiers: {b1, b2, b3,...} are built.

» Forb1, E1is the set of positives and E2UE3 u... is the set of
negatives, and so on

» For testing: given a classification instance x, the category is the
one associated with the maximum margin among all binary
classifiers




From Binary to Multiclass classifiers

= ALL-vs-ALL (AVA)

» Given the examples: {E1, E2, E3, ...} for the categories {C1, C2,
C3,...}

o build the binary classifiers:
{b1 2,b1 3,...,b1 n, b2 3,b2 4,...,b2 n,....bn-1_n}

o by learning on E1 (positives) and E2 (negatives), on E1
(positives) and E3 (negatives) and so on...

» For testing: given an example x,
o all the votes of all classifiers are collected

o where bg g, = 1 means a vote for C1 and bgqe, = -1 is a vote
for C2

» Select the category that gets more votes




Natural Language Processing
and Information Retrieval

Structured Output

Alessandro Moschitti

Department of information and communication technology
University of Trento
Email: moschitti@dit.unitn.it




Simple Structured Output

= We have seen methods for: binary Classifier or
multiclassifier single label

s Multiclass-Multilabel is a structured output, i.e. a
label subset is output




From Binary to Multiclass classifiers

= [hree different approaches:

= ONE-vs-ALL (OVA)

» Given the example sets, {E1, E2, E3, ...} for the categories: {C1,
C2, C3,...} the binary classifiers: {b1, b2, b3,...} are built.

» For b1, E1is the set of positives and E2UE3 u... is the set of
negatives, and so on

» For testing: given a classification instance x, the category is the
one associated with the maximum margin among all binary
classifiers




From Binary to Multiclass classifiers

= ALL-vs-ALL (AVA)

» Given the examples: {E1, E2, E3, ...} for the categories {C1, C2,
C3,...}

o build the binary classifiers:
{b1 2,b1 3,...,b1 n, b2 3,b2 4,...,b2 n,....bn-1_n}

o by learning on E1 (positives) and E2 (negatives), on E1
(positives) and E3 (negatives) and so on...

» For testing: given an example x,

o all the votes of all classifiers are collected

o where bg g, = 1 means a vote for C1 and bgqe, = -1 is a vote
for C2

» Select the category that gets more votes




From Binary to Multiclass classifiers

= Error Correcting Output Codes (ECOC)

» The training set is partitioned according to binary sequences
(codes) associated with category sets.

o For example, 10101 indicates that the set of examples of
C1,C3 and C5 are used to train the C,y4¢4 Classifier.

o The data of the other categories, i.e. C2 and C4 will be
negative examples

» In testing: the code-classifiers are used to decode one the original
class, e.g.
Ci0101 = 1and C,4910 = 1 indicates that the instance belongs to C1

That is, the only one consistent with the codes




Designing Global Classifiers

s Each class has a parameter vector (w,,b,)
= X IS assigned to class k iff

w,;ra: + by, > mMax; ija: + b;
= For simplicity set b,=0
(add a dimension and include it in w,)
= The goal (given separable data) is to choose w, s.t.

V(zt, yb), wyiTa:i > max; w;_xi




Multi-class SVM

Primal problem: QP

_ 1
min iH(w1,---,wK)HQ‘|‘ngik
ik

wi,..., WK

s.t. V(i k), qu;T:Bi — w/;ra?i > 1{k7ﬁyi} — &ik




Structured Output Model

= Main idea: define scoring function which
decomposes as sum of features scores k on
“parts’ p:

score(x,y,w) = w' ®(x,y) = Y wy, (Xp, yp)
k,p
s Label examples by looking for max score:

prediction(x, w) = arg max score(X,y, w)
yeY(x)
« Parts = nodes, edges, etc. ~ SPace o' feasible

outputs




Structured Perceptron

Inputs: Training set (z;,y;) fori=1...n
Initialization: W =0
Define: F(r) = argmax,ccene) ®(z,y) - W
Algorithm: Fort=1...T,i=1...n

z; = F(z;)

If (s #y;)) W=W+®(z;,y;) — ®(zs, %)

Output: Parameters W




(Averaged) Perceptron

For each datapoint x?

Predict: y, = argmax w; ®(x’,y)
yey

Update: Wiyl = Wi+ a(dD(X, yi) — @(Xi, }7@))

7/

updatevif Vi FEy!

Averaged perceptron: W= — Z Wi



Example: multiclass setting

Predict: = arg max w;—wi Feature encoimg: -
Y dP(x',y=1)' = [x" 0...0]
. T
P(xt,y=2) = [0x' ...0]
Update: if g, £~ yi then T
’wit-|—1:’wit‘|‘a$7’ P(xy=K) = [00..x"]
v _ 0 2 w! = [w] we ... wi]
Wy t+1 = Wyt — L Lol K
Predict: y; = arg max w;r d(xt,y)
yey

Update: Wt_|_1 = W¢ —|— Oé(cb(Xy yz) — CD(Xia yz))
updatevif NIE




Output of Ranked Example List




Support Vector Ranking

min %le|+02?’1£2
yk(w ( )_|_b) > 1 _€k7 \V/Z,] — 17"7m

yr = 1 if rank(z;) > rank(2;), 0 otherwise, where k = ¢ X m + j

= Given two examples we build one example (x;, X))




Concept Segmentation and
Classification task

= Given a transcription, i.e. a sequence of words,
chunk and label subsequences with concepts

s Air Travel Information System (ATIS)

» Dialog systems answering user questions
» Conceptually annotated dataset
» Frames




An example of concept annotation in
ATIS

s User request: list TWA flights from Boston to
Philadelphia

list TWA flights from Boston to Philadelphia
AN e Ve S e e Vo g ~ v

null airline_code 411 null fromloc.city null toloc.city

= The concepts are used to build rules for the dialog
manager (e.g. actions for using the DB)

s from location [ list flights from boston to Philadelphia
: FRAME: FLIGHT
= to location FROMLOC.CITY = boston
s airline code | TOLOC.CITY = Philadelphia |




Our Approach
(Dinarelli, Moschitti, Riccardi, SLT 2008)

s Use of Finite State Transducer to generate word
sequences and concepts

= Probability of each annotation
= m best hypothesis can be generated

s ldea: use a discriminative model to choose the

best one
» Re-ranking and selecting the top one




Experiments

= Luna projects’ Corpus Wizard of OZ

Corpus LUNA Training set Test set

words concepts words concepts
Dialogs 183 67
Turns 1,019 373
Tokens 8,512 2,887 2,888 984
Vocabulary 1,172 34 - -
OOV rate - - 3.2% 0.1%




Re-ranking Model

= The FST generates the most likely concept
annotations.

s These are used to build annotation pairs,<5", Sf> .
¥ positive instances if s' more correct than g,

= The trained binary classifier decides if s’ is more
accurate than .

s Each candidate annotation s’ is described by a
word sequence where each word is followed by
its concept annotation.




Re-ranking framework

Hypotheses Pairs Hypotheses
H1 <H1,H2> H4
) < -
Input sentence 3 Eloit, H3 H4
— [ASR][stuModel] ) B L0 | fRewaker] "L,
<Hn,H1> H1
Hn <Hn,H2> Hn




Example

s | have a problem with the network card how

s T NULL have NULL a NULL problem
PROBLEM-B with NULL my NULL monitor
HW-B

S§/: I NULL have NULL a NULL problem HW-B
with NULL my NULL monitor




Flat tree representation

ROOT
NULL PROBLEM-B PROBLEM-I HW-B HW-I

Ho un problema col mounitor




Multilevel Tree

ROOT
NULL PROBLEM HW
Ho PROBLEM-B PROBLEM-I HW-B HW-I

un problema col mounitor




Enriched Multilevel Tree

ROOT

PROBLEM

/\ PROBLEM-B PROBLEM-I HW-B HW-I

FO:Ho  Fl:Ho FOun  FLART  FO:problema  Fl:problema F0:col FL:SPRE  FO:momtor  Fl:monitor




Results

Model Concept Error Rate

='30% of error reduction of

the best model
FSA+Re-Ranking 16.01




Structured Perceptron

Inputs: Training set (z;,y;) fori =1...n
Initialization: W =0
Define: F(r) = argmax,ccene) ®(z,y) - W
Algorithm: Fort=1...T,i=1...n

z; = F(z;)

If (z; #y;)) W =W+ ®(z;,y;) — ®(z;, )

Output: Parameters W




Structured Output Prediction
with
Structural Support Vector Machines

Thorsten Joachims

Cornell University
Department of Computer Science

Joint work with
T. Hofmann, I. Tsochantaridis, Y. Altun (Brown/Google/TTI)
T. Finley, R. Elber, Chun-Nam Yu, Yisong Yue, F. Radlinski
P. Zigoris, D. Fleisher (Cornell)




Supervised Learning

Assume: Data 1s 1.1.d. from
P(X,Y)
Given: Training sample

S = ((wla yl)v ceey (':UWM yn))

Goal: Find function from input space X tc

h: X —Y

with low risk / prediction error
R(h) = | A(h(z),)dP(X,Y)

Methods: Kernel Methods, SVM, Boosting, etc.

Complex objects




Examples of Complex Output Spaces

 Natural Language Parsing
— G1ven a sequence of words x, predict the parse tree y.

— Dependencies from structural constraints, since y has to be a
tree.

y S

The dog chased the cat — / \ /

Det Det




Examples of Complex Output Spaces

* Protein Sequence Alignment
— G1ven two sequences x=(s,¢), predict an alignment y.

— Structural dependencies, since prediction has to be a valid
global/local alignment.

X y
s= (ABJLHBNJYAUGAT) AB-JLHBNJYAUGAT

— | 11T T

t= (BHJKBNYGU) BHJK-BN-YGU




Examples of Complex Output Spaces

e Information Retrieval
— Gi1ven a query X, predict a ranking y.
— Dependencies between results (e.g. avoid redundant hits)

— Loss function over rankings (e.g. AvgPrec)

Kernel-Machines

SVM-Light

Learning with Kernels

SV Meppen Fan Club

Service Master & Co.

School of Volunteer Management
SV Mattersburg Online

X| sym |—— ¥

= e o e =




Examples of Complex Output Spaces

Noun-Phrase Co-reference

— G1ven a set of noun phrases x, predict a clustering y.

— Structural dependencies, since prediction has to be an
equivalence relation.

— Correlation dependencies from interactions.

X

y

The policeman fed The policemanl fed

the cat. He did not know

that he was late.

The cat 1s called Peter.




Examples of Complex Output Spaces

 and many many more:

— Sequence labeling (e.g. part-of-speech tagging, named-entity
recognition) [Lafferty et al. 01, Altun et al. 03]

— Collective classification (e.g. hyperlinked documents) [Taskar
et al. 03]

— Multi-label classification (e.g. text classification) [Finley &
Joachims 08]

— Binary classification with non-linear performance measures
(e.g. optimizing F1-score, avg. precision) [Joachims 03]

— Inverse reinforcement learning / planning (1.e. learn reward
function to predict action sequences) [Abbeel & Ng 04]




Overview

Task: Discriminative learning with complex outputs
Related Work
— SVM algorithm for complex outputs
» Predict trees, sequences, equivalence relations, alignments
* General non-linear loss functions
* Generic formulation as convex quadratic program
— Training algorithms
* n-slack vs. 1-slack formulation
« Correctness and sparsity bound
— Applications
— Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
— Diuversification of retrieval results in search engines [w/ Yisong Yue]
— Supervised clustering [w/ Thomas Finley]
Conclusions




Why Discriminative Learning for

Im;

Din

Structured Outputs?
. it!

Precision/Recall . .

Break-Even Point Naive Bayes Linear SVM 1 06]
Reuters 72.1 87.5

WebKB 82.0 90.3

ification

Ohsumed 62.4 71.6

Improve upon prediction accuracy of existing generative methods!

— Natural language parsing: generative models like probabilistic context-

free grammars

— SVM outperforms naive Bayes for text classification [Joachims, 1998]

[Dumais et al., 1998]

More flexible models!

— Avoid generative (independence) assumptions

— Kernels for structured input spaces and non-linear functions




Related Work

Generative training (i.e. model P(Y,X))
— Hidden-Markov models
— Probabilistic context-free grammars
— Markov random fields
— etc.
Discriminative training (i.e. model P(Y|X) or minimize risk)

— Multivariate output regression [Izeman, 1975] [Breiman & Friedman,
1997]

— Kernel Dependency Estimation [Weston et al. 2003]

— Transformer networks [LeCun et al, 1998]

— Conditional HMM [Krogh, 1994]

— Conditional random fields [Lafferty et al., 2001]

— Perceptron training of HMM [Collins, 2002]

— Maximum-margin Markov networks [Taskar et al., 2003]

— Structural SVMs [Altun et al. 03] [Joachims 03] [TsoHoJoA104]
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Classification
 Training Examples: (x

« Hypothesis Space: h(x

1

Dual Opt. Problem:

1
max Zaqz—gz > yiyjaoy (X - X;)

s.t.: M

V?:]_:OSQZ'<

n

C

« Training: Find hyperp

n
*__ ko
w _Zai YiXg

=1

Primal Opt. ProblemJ

min  ~wlw 4 & Enj ;
w,E>0b 2 n =
st yr(wxy +¥) > 1-&

yn(WTXn ‘|‘m > 1—£n




Challenges 1n Discriminative Learning with
Complex Outputs

Approach: view as multi-class classification task
— Every complex output yi € Y is one class
Problems:

— Exponentially many classes!
« How to predict efficiently?

* How to learn efficiently?

o 1 / S\
— Potentially huge model! Y1 oye %
y g /N
« Manageable number of features? VN V.  Det
Y| npe” S VB,
NP
X PEAN
The dog chased the cat —_— Det NV D
.
[ ]
Y| yp+— S
/e e
Det N V Det




Training: Find <y, ..., w,> that solve
k

n
min Y @+ =) ¢
’U_J']_,...,’U_J*n,é- 1=1 n 1=1
. . —»T —_ —bT—*
sit. Vj#Fyi: Wy, L1 2 w; T +1-¢4

Problems
* How to predict efficiently?

* How to learn efficiently?
* Manageable number of parameters? i

The dog chased the cat




Joint Feature Map

» Feature vector & (z, y) that describes match between x and y
« Learn single weight vector and rank by Pz )

h(Z)= argmax,cy [QBTCD(ZE, y)]

Problems
* How to predict efficiently?
P . 4 o' D (@ o)
* How to learn efficiently?
° ()J
Manageable number of parameters T (@ 1)
X =XME_V-DIE- . u_}, i/ = wT CD (,’I," yl 2)
The dog chased the cat v ;{i}y V}—{%ﬁt\—N— y )
¥ S~ YR E = n
P\ N~ NP N ks wT a’yjﬁ
Det N V T)e‘rt‘N
y58 o S ,
/VP\ NP \NP ol (z, ys8)
Det Nt ~AV T)e‘rt‘N




Joint Feature Map for Trees

 Weighted Context Free Grammar CKY Parser

— Eachrule (e.g. §S—> NPVP) hasa weight/

— Score of a tree 1s the sum of its weights

— Find highest scoring tree h(Z)= argmax,cy [fu_J’TCD(:I:, y)]

Problems NP VP

« How to predict efficiently? \/ NP
* How to learn efficiently? Det N

* Manageable number of parameters‘?\/ VNP

/ \ / \NP PYI=10 ] Det dog
7N\ 2| Det—the
Det N V Det N 1| N —>dog
l l l l l 1 |V — chased
The dog chased the cat 1) N —>cat




Structural Support Vector Machine

Hard-margin optimization problem:
. 1

min —al'w 7
W0 2
* T T ty
st. VyeY\yy:w P(x1,y1) >0 P(z1,y) +1
T Vy € Y\yn : ’LBTCb(xna Yn) > ’CUTCD(fUmy) + 1
w L7 JL7 ) 927 A\ v ary e 4 < n7yn)

(r1,91) (z2,92) (z3,¥3) (zn, yn)




Loss Functions: Soft-Margin Struct SVM

o

Soft-margin optimization problem:

st. YyeY\yy : wld(zy,y1) > @ d(21,y) + Alyr,y) —€1

Yy EY\yn : WD (xn, yn) > TP (20, y) + Ayn,y) —én

’Jn)

ilA(yLy’) l l %A%,y/) _L

Lemma: The training loss is upper bounded by

1> 1§
Brrs(h) == 3~ Ay, (7)) < = 30 &
i=1 1=1

| | | |
(z1,91) (z2,92) (z3,¥3) (zn, yn)




Experiment: Natural Language Parsing

Implemention

— Incorporated modified version of Mark Johnson’s CKY parser
— Learned weighted CFG with e = 0.01,C =1

Data
— Penn Treebank sentences of length at most 10 (start with POS)
— Train on Sections 2-22: 4098 sentences

— Test on Section 23: 163 sentences

Test Accuracy
Method Acc Fy

PCFG with MLE 55.2 | 86.0
SVM with (1-Fy)-Loss| 58.9 | 88.5 | [TsoJoHoAlI04]

— more complex features [TaKlCoKoMa04]




Generic Structural SVM

Application Specific Design of Model
— Loss function A (y;, y)
— Representation ®(z, y)

=» Markov Random Fields [Lafferty et al. 01, Taskar et al. 04]
Prediction:

g=argmaz,cy{w ®@,y)}

Training:
1 C &
min @@+ — Y ¢
0,E>0 2 n =1

st. YyeY\yy : @ d(z1,y1) > @ d(21,9) + Ayr,y) €1

Yy E€Y\yn : WD (zn, yn) > TP (2n, y) + Ayn,y) —én

Applications: Parsing, Sequence Alignment, Clustering, etc.




Reformulation of the Structural SVM QP

n-Slack Formulation: [TsoJoH0A104]
: 1 7., CL
min W T+ — ) &
Tﬁ,g n 1=1

st. WeY wld(zr,yr) —dd(21,y) > Ayr,y) &1

Vy' €Y : 117T¢(33n7 Yn) — chb(xn,y’) > A(yn,y) —én




Reformulation of the Structural SVM QP

n-Slack Formulation: [TsoJoHoAl104]
, 1 7., C&
min - @@+ — ) &

st. Vyey wld(zr,y1) — dd(x1,y) > Alyr,y) —é1

Vy' €Y : wTd)(iUnayn) — wTd)(CUn, y') > A(yn,y) —én

&

1-Slack Formulation: [JoFinYuOg8]

.1 _p

min —w'w+ C

LU + C¢
n

s.it. Vyi..yn€Y : %Z[@T@%yﬁ—’lﬁ:ﬁ@%,yﬂ > %zn:[A(yz',yN —
=1

=1




Cutting-Plane Algorithm for
Structural SVM (1-Slack Formulation)

* IHPUt3 (xlvyl)v SR} (xnvyn)vca €
° S<—@,U7<—O,£<—O

Find most Violated
 REPEAT violated by more
_FOR i=1.....n constraint than € ?

— Compute ygzargmaxyey{A(yi,y)—l—w’TdD (:U’iay)}
— ENDFOR
~IF Y | AGy) — B[P @ p)-@u)])| > E+e —

=1

—S—SU {wT%Z[Mwi,yi)—Mw@,yQ] > EZA@Z-,?JQ — ¢}
=1 =1

— [, €] eptimize StructSVM over \_
_ ENDIF Add constraint
to working set

« UNTIL has not changed during iteration
[Jo06] [JoFinYu08]




Polynomial Sparsity Bound

e Theorem: The cutting-plane algorithm finds a solution to
the Structural SVM soft-margin optimization problem in the
1-slack formulation after adding at most

s o o 2]

constraints to the working set S, so that the primal
constraints are feasible up to a precision and the objective
on S 1s optimal. The loss has to be bounded 0 < Ay;,y) < A,
and 2||®@,y)|| < R.

[Jo03] [Jo06] [TeoLeSmVi07] [JoFinYuOS]




Number of constraints added

Empirical Comparison: Different Formulations

Experiment Setup:
— Part-of-speech tagging on Penn Treebank corpus
— ~36,000 examples, ~250,000 features in linear HMM model

1e+06 . ——— ———
i n-Slack Formulation —
1-Slack Formulation
100000 - A 4 B
o c
i _ 5
- (&]
T 3
+ - E
10000 - IS
. £
Q
£
c
=
1000 - 4
100 ] : e :
100 1000 10000 100000

Number of Training Examples

1e+07 —

1e+06 |
100000 -

10000 -

1000 -

‘n‘-‘SIa‘ck F‘o‘r}nu‘latio‘n‘
1-Slack Formulation
X — — — —

100 - —

100

1000 10000 100000

1e+06 1e+07

Number of Training Examples

[JoFinYuOS]




Applying StructSVM to New Problem

General

— SVM-struct algorithm and implementation
http://svmlight.Jjoachims.orqg

— Theory (e.g. training-time linear in n)
Application specific
— Loss function A (vy;, 1)

— Representation d (2, )
— Algorithms to compute

—~

j=argmazycy{w ®@;y}
§=argmazycy{ANy;.y) +7 S @;,))}

Properties
— General framework for discriminative learning

— Direct modeling, not reduction to classification/regression

— “Plug-and-play”




Overview

Task: Discriminative learning with complex outputs
Related Work
SVM algorithm for complex outputs
— Predict trees, sequences, equivalence relations, alignments
— General non-linear loss functions
— Generic formulation as convex quadratic program
Training algorithms
— n-slack vs. 1-slack formulation
— Correctness and sparsity bound
Applications
— Sequence alignment for protein structure prediction [w/ Chun-Nam Yu]
— Diuversification of retrieval results in search engines [w/ Yisong Yue]
— Supervised clustering [w/ Thomas Finley]

Conclusions




Comparative Modeling of Protein Structure

* Goal: Predict structure from sequence
h(“APPGEAYLQV”) > @;g@fg
 Hypothesis:
— Amino Acid sequences for into structure with lowest energy
— Problem: Huge search space (> 2!% states)
 Approach: Comparative Modeling

— Similar protein sequences fold into similar shapes
-> use known shapes as templates

— Task I: Find a similar known protein for a new protein
h(“APPGEAYLQV”, eﬁ' ) = yes/no
=== — Task 2: Map new protein into known structure
h(“APPGEAYLQV”, ﬁ ) > [AD3PI4PDT,.. ]

— Task 3: Refine structure
[Jo03, JoE1Ga05,YuJoEI06]




Linear Score Sequence Alignment

Method: Find alignment y that maximizes linear score
y =argmaz,cy{score(z=(s1),y)}
Example:
— Sequences: A B C D -

S=(A B C D) Al10 0 5 10 -5
j B[O 10 5 -10 -5
t=(B A C C) c|-s 5 10 -10 -5
— Alignment y: D |-10 -10 -10 10 -5
A B CD - |5 5 5 5 s
B ACUC > score(x=(s,t),y;) = 0+0+10-10 = 0
— Alignment y,:
- ABCOD

B A C C — =2score(x=(s,t),y,) =-5+10+5+10-5=15
Algorithm: Solve argmax via dynamic programming.




Predicting an Alignment

Protein Sequence to Structure Alignment (Threading)

— Given a pair x=(s,¢) of new sequence s and known structure ¢,

predict the alignment y.

— Elements of s and ¢ are described by features, not just

character 1dentity.

3240145014352
ABJLHBNJYAUGA

éHJKBNYGU)
BAABBANC

(BBBAABBAA@&@Q

)

B-JLHBNJYAUGA

(]'BHLIL_]'BIL_JEJ;JJ)
BRAA-BR-AA

BR-BAABBAACCIOC
32-40145014352

)

[YuJoEI07]




Scoring Function for Vector Sequences

General form of linear scoring function:

score (x=(s,t),y) = Z score(y;, yf)
ZWT¢(S, t, yi)
— WTqu(Satay’i)

= w' O(x,y)
—> match/gap score can be arbitrary linear function

—> argmax can still be computed efficiently via dynamic
programming
Estimation:
— QGenerative estimation (e.g. log-odds, hidden Markov model)

— Discriminative estimation via structural SVM
[YuJoE107]




Loss Function and Separation Oracle
* Loss function: A(y;,y)

— Q loss: fraction of incorrect alignments

+ Correct alignment y= - i ]8 8 D
9 AQ(Yay,):1/3
* Alternate alignmenty’= 5 c G Z

— Q4 loss: fraction of incorrect alignments outside window

o Correct alignment y= ]; i ]é) g [_)
> Agu(y,y’)=0/3

: ’ A - B C D

* Alternate alignmenty’= g o ~ ~ _

* Separation oracle: ¥ =argmaz,cy{Ay;,y) @)}

— Same dynamic programming algorithms as alignment
[YuJoE107]




Experiment

e Train set [Qiu & Elber]:

— 5119 structural alignments for training, 5169 structural alignments for
validation of regularization parameter C

e Test set:

— 29764 structural alignments from new deposits to PDB from June
2005 to June 2006.

— All structural alignments produced by the program CE by
superimposing the 3D coordinates of the proteins structures. All
alignments have CE Z-score greater than 4.5.

 Features (known for structure, SABLE predictions for sequence):
— Amino acid identity (A,C,D,E,F,G,H,I,K,L,M,N,P.Q,R,S,T,V,W,Y)
— Secondary structure (a,p,\)
— Exposed surface area (0,1,2,3.,4,5)

[YuJoEI07]




Experiment Results

Models:

e Simple: O(s,ty) & (A|A; A|C; ...;-|Y; alo; off...; 0[0; 0[1;...)
 Anova2: O(s,ty,) & (AalAa...; a0|a0...; AOJAO;...)

* Tensor: @(s,ty;) & (Aa0|Aa0; AaO|Aal; ...)

Window: O(s,ty;) <& (AAAJAAA; ...; aooao|aaoad; ...; 00000/00000;...)

Ability to train complex models? Comparison against other methods?
Q-Score # Features Test Q4-score Test
Simple 1020 39.89 BLAST 28.44
Anova2 49634 44.98 SVM (Window) 70.71
Tensor 203280 42.81 SSALN [QiuElber] 67.30
Window 447016 46.30 TM-align [ZhaSko] (85.32)

Q-score when optimizing to Q-loss Q4-score when optimizing to Q4-loss

[YuJoEI07]
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Diversitied Retrieval

Ambiguous queries: Query: SVM
- Example query: “SVM” 1. Kernel Machines
ML method
» Service Master Company 2. SVM book
* Magazine . N 3. SVM-liaht
* School of veterinary medicine Query: SVM
* Sport Verein Meppen e.V. 4.
e SVM software 5 1.  Kernel Machines
* SVM books 5 2. Service Master Co
— “submodular” performance measure
3. SV Meppen
= make sure each user gets at least 7 _
one relevant result 4. UArizona Vet. Med.
Learning Queries: 5. SVM-light
— Find all information about a topic 6. Intro to SVM
— Eliminate redundant information 7.

[YuelJoO8]




Approach

 Prediction Problem:

— @Given set x, predict size k subset y that satisfies most users.

* Approach: Topic Red. 2 Word Red. [SwMaKi(8]

> y={DI1,D2,D3,D4}

yC,ly|1=k | weu(y)
— Qreedy algorithm 1s 1-1/e approximation [Khuller et al 97]

- Learn the benefit weights: score(w) = wlo(w, z)

— Weighted Max Coverage: Y — argmax { > SCOTe(w)}

[YuelJoO8]




Features Describing Word Importance

 How important is it to cover word w
« w occurs in at least X% of the documents in x
* w occurs in at least X% of the titles of the documents in x
« w 1s among the top 3 TFIDF words of X% of the documents in x
e wisaverb
- Each defines a feature in ¢(w, x)

 How well a document d covers word w
e woccursind
e w occurs at least k times in d

* w occurs 1n the title of d
« w 1s among the top k TFIDF words in d




Loss Function and Separation Oracle

 Loss function:  Ay;,y)

— Popularity-weighted percentage of subtopics not covered in 'y
—>More costly to miss popular topics

— Example:

A(yia {D17 D].O})
Ay;,{ D2, D7})

3/12
10/12

* Separation oracle: y=argmaz,cy{Ay;y) + T D@}
— Again a weighted max coverage problem
—> add artificial word for each subtopic with percentage weight

— Greedy algorithm 1s 1-1/e approximation [Khuller et al 97]

[YueJoO8]




Data:

Experiments

— TREC 6-8 Interactive Track
— Relevant documents manually labeled by subtopic

— 17 queries (~700 documents), 12/4/1 training/validation/test

— Subset size k=5, two feature sets (div, div2)

Results:
Method LL.oss 0:: -

Random 0.469 | o ol -
Okapi 0.472 e 0375t
Unweighted Model 0.471 “ =
Essential Pages — 0.434 | | il
SVM%, 0.349 | %oms
SVMZ%., . 0.382 | o

—=—SVM Test Loss |

0.345
4
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Learning to Cluster

 Noun-Phrase Co-reference
— G1ven a set of noun phrases x, predict a clustering y.

— Structural dependencies, since prediction has to be an
equivalence relation.

— Correlation dependencies from interactions.

X Yy

The policeman fed

The policemanl fed

the cat. He did not know

that he was late.

The cat 1s called Peter.




Struct SVM for Supervised Clustering

Rep_pnanni-nl-:nn
W ;[ 10 25 00 0021 01 00 1111000
_ 00 10 30 01 01 03 00 LT 1T 1000101}
00 00 10 03 22-09 00 1 111000]|]
090401 1010120 1111000
- 00 00 00-03 10 23 00 0000711 1|pd
01 01 0001 01 10 18 00001111
B -10 =07 00 -02 -11 01 10 0000111
Los
- A(y,y) = |ly — ¥l
Predi()’llllOOO 111000 0| T
111000 1110000%;1?5;,%”00%9)}
Findd | 1111000 1110000
g4 1111000 0001000
_Nf| 0000 T 11 0000 1 1 1||gca 2003]
0000111 0000111 |
00001 11 0000111 [FiJo05]




Summary and Conclusions

* Learning to predict complex output
— Directly model machine learning application end-to-end
 An SVM method for learning with complex outputs

— General method, algorithm, and theory
— Plug in representation, loss function, and separation oracle

— More details and further work:
» Diversified retrieval [Yisong Yue, [CMLOS]
» Sequence alignment [Chun-Nam Yu, RECOMBO07, JCB0§]
» Supervised k-means clustering [Thomas Finley, forthcoming]

* Approximate inference and separation oracle [Thomas Finley, [CMLO0S§]
 Efficient kernelized structural SVMs [Chun-Nam Yu, KDDOS§]

e Software: SVMstruct

— @QGeneral API

— Instances for sequence labeling, binary classification with non-linear loss,
context-free grammars, diversified retrieval, sequence alignment, ranking

- http://svmlight. joachims.org/




PART Ill: Basics of Natural Language
Processing




Part-of-Speech tagging

= Given a sentence W,...W,, and a tagset of lexical
categories, find the most likely tag T,4..T, for each word in

the sentence

s Example

Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NN

People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN
the/DT race/NN for/IN outer/JJ space/NN

= Note that many of the words may have unambiguous tags

» But enough words are either ambiguous or unknown that it’ s a
nontrivial task




Part Of Speech (POS) Tagging

= Annotate each word in a sentence with a part-of-

speech.
[ ate the spaghettt with meatballs.
Pro V Det N Prep N

John saw the saw and decided to take it to the table.
PN V Det N Con V Part V ProPrepDet N

m Useful for subsequent syntactic parsing and word sense

disambiguation.




PTB Tagset (36 main tags + punctuation

tags)

CD
DT
EX
Fur
In
JJ
JJR
JJ3
L3
MD

NP
NPS
PDT
POS
PP
PP$§
RB
RER
RBS
RP
SYM
TO
UH
VB
VEBD
VEBG
VBN
VEBP
VBZ
WDT
WP
WP$
WRE

Coordinating conjunction
Cardinal number

Determiner

Existential there

Foreign word

Preposition or subordinating conjunction
Adijective

Adjective, comparative

Adjective, superlative

List item marker

Modal

Noun, singular or mass

Noun, plural

Proper noun, singular

Proper noun, plural

Predeterminer

Possessive ending

Personal pronoun

Possessive pronoun

Adverb

Adverb, comparative

Adverb, superlative

Particle

Svyrbol

to

Interjection

Verb, base form

Verb, past tense

Verb, gerund or present participle
Verb, past participle

Verb, non-3rd person singular present
Verb, 3rd person singular present
WTh-determiner

Wh-pronoun
Possessive wh-pronoun
WTh-adverh




Solution

s [ext Classifier:

» Tags categories
» Features windows of words around the target word
» N-grams




Named Entity Recognition

= NE involves identification of proper names in texts,
and classification into a set of predefined categories
of interest.

s Three universally accepted categories: person,
location and organisation

s Other common tasks: recognition of date/time
expressions, measures (percent, money, weight etc),
email addresses efc.

s Other domain-specific entities: names of drugs,
medical conditions, names of ships, bibliographic
references etc.




Problems in NE Task Definition

s Category definitions are intuitively quite clear,
but there are many grey areas.

s Many of these grey area are caused by
metonymy.
» Organisation vs. Location : “England won the

World Cup” vs. “The World Cup took place in
England”.

» Company vs. Artefact: “shares in MTV" vs.
“watching MTV”

» Location vs. Organisation: “she met him at
Heathrow’ vs. “the Heathrow authorities”




NE System Architecture

documents JJ

S

\

tokeniser |—— | gazetteer | ——

NE
grammar




Approach con’t

s Again Text Categorization

= N-grams in a window centered on the NER

s Additional Features

Gazetteer

Word Capitalize
Beginning of the sentence
Is it all capitalized




Approach con’t

= NE task in two parts:
» Recognising the entity boundaries
» Classifying the entities in the NE categories

» Some work is only on one task or the other
s [okens in text are often coded with the |OB scheme

O — outside, B-XXX — first word in NE, |I-XXX — all other words
in NE

Easy to convert to/from inline MUC-style markup

Argentina B-LOC

played O
with O
Del B-PER

Bosque I-PER




WordNet

s Developed at Princeton by George Miller and his
team as a model of the mental lexicon.

» Semantic network in which concepts are defined
In terms of relations to other concepts.

s Structure:

organized around the notion of synsets (sets of
synonymous words)

basic semantic relations between these synsets
Initially no glosses

Main revision after tagging the Brown corpus with word
meanings: SemCor.
http://www.cogsci.princeton.edu/~wn/w3wn.html




Structure

{conveyance; transport}

*hypemnym
{vehicle}
*hyperonym fbumper} {hinge; flexible joint}
{motor vehicle; automotive vehicle} Tneronym
{car door} {doorlock}
T meronym meronym
hyperonym

. . ar win
{car; auto; automobile; machine; motorcar} {car window}

\ meronym {car mirror}
hyperonym hyperonym

{cruiser; squad car; patrol car; police car; prowl car} {cab; taxi; hack; taxicab; }

{armrest}




Syntactic Parsing




Dependency Syntax

» The basic idea:

» Syntactic structure consists of lexical items, linked by binary
asymmetric relations called dependencies.

®296




Dependency Structure

obj ole

nmod sbj nmod |nmod nmod

L]

A 4 v A ) ] y
Economic news had little effect on financial markets

A




Terminology

Superior Inferior
Head Dependent
Governor Modifier

Regent Subordinate




Phrase Structure

(or Constituent Structure)

S

VP
NP

gy

NP NP NP PU

JJ NN VBD JJ NN [N JlJ NNS

Economic news had little effect on financial markets




Comparison

» Dependency structures explicitly represent

> head-dependent relations (directed arcs),
> functional categories (arc labels),
» possibly some structural categories (parts-of-speech).

» Phrase structures explicitly represent

» phrases (nonterminal nodes),
» structural categories (nonterminal labels),
» possibly some functional categories (grammatical functions).

» Hybrid representations may combine all elements.




Predicate Argument Structures




Shallow semantics from predicate
argument structures

s In an event:

» target words describe relation among different entities

» the participants are often seen as predicate's
arguments.

s Example:

a phosphor gives off electromagnetic energy in this
form




Shallow semantics from predicate
argument structures

s In an event:

» target words describe relation among different entities

» the participants are often seen as predicate's
arguments.

s Example:

[ArgO a phosphor] [ predicate ] [Arg1 electromagnetic
energy] [ agm in this form]




Shallow semantics from predicate
argument structures

s In an event:

» target words describe relation among different entities
» the participants are often seen as predicate's

arguments.
s Example:
[ argo @ PhOSPhOr] [ predicate 1[ argr €lectromagnetic
energy] [ agm in this form]
[ ARGM 1 [ predicate NIt] [ argo DY €lectrons] [ 441 @

phosphor]




Example on Predicate Argument
Classification

s In an event:

» target words describe relation among different entities
» the participants are often seen as predicate's arguments.

s Example:

Paul gives a talk in Rome




Example on Predicate Argument
Classification

s In an event:

» target words describe relation among different entities
» the participants are often seen as predicate's arguments.

s Example:

[ Arg0 Paul] [ predicate giVGS ] [Arg1 a talk] [ ArgM in Rome]




Predicate-Argument Feature
Representation

Given a sentence, a predicate p:

1. Derive the sentence parse tree S
e p PN
2. For each node pair <N;,N,> T /VIP .
a. Extract a feature representation set Paul, V  Np PP
F Arg. 0 | D/ \ / \
gives N IN N
b. If N, exactly covers the Arg-i, Fis o | .| |
one of its positive examples g falk i Rome,

i ) ) Arg. 1 Arg. M
c. Fis anegative example otherwise




Vector Representation for the linear kernel

Phrase Type

Predicate

Word

Head Word | /PP\
TN

Prod;
Parse Tree redicate a talk in Rome
MhiOn nght Al‘g. 1

Voice Active




Question Answering




Basic Pipeline

Relevant
Question Question Query | Paragraph Passaces| Answer extraction |Answer
Processing Retrieval and formulation

A A
Semantic Class oflexpected Answers T

\J \/
N
N
Document
Answer Type Collection
Ontologies R
N




Question Classification

s Definition: What does HTML stand for?

= Description: What's the final line in the Edgar Allan Poe
poem "The Raven"?

= Entity: What foods can cause allergic reaction in people?
= Human: Who won the Nobel Peace Prize in 19927

= Location: Where is the Statue of Liberty?

= Manner: How did Bob Marley die?

= Numeric: When was Martin Luther King Jr. born?

= Organization: What company makes Bentley cars?




Question Classifier based on Tree Kernels

s Question dataset (http://I12r.cs.uiuc.edu/~cogcomp/Data/QA/QC/)
[Lin and Roth, 2005])

» Distributed on 6 categories: Abbreviations, Descriptions, Entity,
Human, Location, and Numeric.

s Fixed split 5500 training and 500 test questions

= Using the whole question parse trees

» Constituent parsing
» Example

“What is an offer of direct stock purchase plan ?”




Syntactic Parse Trees (PT)

WHNP

|
WP

|
What

VBZ

is

ROOT
|
SBARQ
SQ
|
VP
NP
NP PP
T
DT NN
| |
an offer I|N NP

JJ NN NN NN
| | I |

direct stock  purchase plan



Similarity based on the number of
common substructures

VP

V/|

NP
| / \
hit |D II\I

a phosphor




A portion of the substructure set

VP VP VP NP NP NP

/ \ / / \
/ | / | / | D N D \N D N
\Y4 NP V NP V NP | | | |
| /\ /\ /\ a phosphor a phosphor

ht D ND N D N
B ] vV o~ DN

a phosphor a phosphor | D/ \ J |
/V |P /V T /V {) y N " VP 0 VPphOSphor
VP
V. NN v NPV NPV | /| /\ /|

/N /N | /NP\ \|/ NE VNPV

. /
| N D I\|I hit Il) N hit D \N hL hi|t D/ \N
a phosphor a phos|ph01’




Explicit tree fragment space

p(r)=x=(,..,1,..0,...1,...0,..,1,..,0,..,1,..,0,..,1,..,0,..,1,..,0)

VP VP VP NP NP
/ \ / / \
\|/ /NP\ A% /NP\ Vv /NP\ | | | |
delivers D 1\|I D N 1|) 1\|T a talk a talk
a talk a talk

¢(7—;) = Z = (19“909“909"919”909"91 9"909"919”909"909"913“909"90)

VP VP VP NP NP
e /| AR b’ W
\lf NP \Y4 /NP\ \ /NP\ | |
delivers 1|\T D N Il) 1\|T a talk
| a talk

talk

s X -z counts the number of common substructures




Similarity based on WordNet

Inverted Path Length: 1
1 + CZ(Cl_, CQ))G‘

simrpr(ci,c2) = (

Wu & Palmer:

SIMWU P (Cl y C2 ) —
2 dep(lso(cy, c2))
d(ci,lso(c1, c2)) + d(c2, lso(c, ¢2)) + 2 dep(lso(c, c2))

Resnik:
simrps(ci1,c2) = —log P(lso(ci, ¢2))

Lin:

simpn(c1,ca) = 2 log P(lso(c1,c2))
StmLIN (e, €2) = 170 P(c1) +log P (c2)




Question Classification with SSTK

Accuracy

A parameter 0.4 | 0.05 | 0.01 [0.005]0.001
linear (bow) 0.905

string matching|0.890| 0.910 |0.914{0.914|0.912
full 0.904(0.924(0.918 1 0.922 [ 0.920
full-ic 0.908(0.922(0.916 1 0.918 | 0.918
path-1 0.906(0.918(0.912 10.918|0.916
path-2 0.896(0.914 ({0.914 10.916]|0.916
lin 0.908(0.924(0.918 1 0.922 ] 0.922
wup 0.908(0.926(0.918 1 0.922 ] 0.922




A QA Pipeline: Watson Overview

Question .
Trained
|
Question Hypothesis] J Hypothesis and [Candidate
Analysis GenerationJ lEvidence Scoring L Ranking
Primary | |Candidate Supporting [?eep Y
Search Answer Evidence Ev1de:nce %ns“f’.fg and
- Generation Retrieval Scoring SRS

Evidence
Sources

Answer
Sources




Thank you
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