
Natural Language Processing

 Alessandro Moschitti & Olga Uryupina
Department of information and communication technology

University of Trento
Email: moschitti@disi.unitn.it uryupina@gmail.com

Based on the materials by Barbara Plank

Syntactic Parsing

NLP: why?

Texts are objects with inherent complex structure. A simple
BoW model is not good enough for text understanding.

Natural Language Processing provides models that go
deeper to uncover the meaning.

!   Part-of-speech tagging, NER
!   Syntactic analysis
!   Semantic analysis
!   Discourse structure

Overview	

•  Linguis'c	
 theories	
 of	
 syntax	

•  Cons'tuency	

•  Dependency	

•  Approaches	
 and	
 Resources	

•  Empirical	
 parsing	

•  Treebanks	

•  Probabilis'c	
 Context	
 Free	
 Grammars	

•  CFG	
 and	
 PCFG	

•  CKY	
 algorithm	

•  Evalua'ng	
 Parsing	

•  Dependency	
 Parsing	

•  State-­‐of-­‐the-­‐art	
 parsing	
 tools	

= 5

Two approaches to syntax

•  Constituency
•  Groups of words that can be shown to act as single

units: noun phrases: “a course”, “our AINLP course”,
“the course usually taking place on Thursdays”,..

•  Dependency
•  Binary relations between individual words in a

sentence: “missed è I”, “missed è course”, “course
èthe”, “course èon”, “on èFriday”.

Constituency (phrase structure)

•  Phrase structure organizes words into nested
constituents

•  What is a constituent? (Note: linguists disagree..)
•  Distribution:

I’m attending the AINLP course.
The AINLP course is on Thursday.

•  Substitution/expansion
I’m attending the AINLP course.
I’m attending it.
I’m attending the course of Prof. Moschitti.

Bracket notation of a tree

(S (NP (N Fed)) (VP (V raises) (NP (N interest) (N
rates)))

Grammars

A grammar models possible constituency structures:

 S è NP VP

 NP è N

 NP è N N

 VP è V NP

Headed phrase structure

Each constituent has a head:

 S è NP VP*

 NP è N*

 NP è N N*

 VP è V* NP

Dependency structure

A dependency parse tree is a tree structure where:

•  the nodes are words,

•  the edges represent syntactic dependencies
between words

Dependency labels

•  Argument dependencies:
•  subject (subj), object (obj), indirect object (iobj)

•  Modifier dependencies:
•  determiner (det), noun modifier (nmod), etc

Dependency vs. Constituency

Dependency structure explicitly represents
•  head-dependent relations (directed arc),
•  functional categories (arc lables).

Constituency structure explicitly represents
•  phrases (non-terminal nodes),
•  structural categories (non-terminal labels)
•  possibly some functional categories (grammatical functions, e.g.

PP-LOC)
Dependencies are better for free word order languages
It’s possible to convert dependencies to constituencies and
vice versa with some effort
Hybrid approaches (e.g. Dutch Alpino grammar)

Parsing algorithms

Classical (pre-1990) NLP parsing

•  Symbolic grammars + lexicons
•  CFG (context-free grammars)
•  richer grammars (model context dependencies,

computationally prohibitively expensive)

•  Use grammars and proof systems to prove
parses from words

•  Problems: doesn’t scale, poor coverage

Grammars again

Grammar
 S è NP VP
 NP è N
 NP è N N
 VP è V NP

Lexicon
 N è Fed
 N è interest
 N è rates
 V è raises

Problems with Classical Parsing

•  CFG -- unlikely/weird parses
•  can be eliminated through (categorial etc) constraints,
•  but the attempt makes the grammars not robust
è  In traditional systems, around 30% of sentences have no

parse
•  A less constrained grammar can parse more

sentences
•  But it produces too many alternatives with no way to chose

between them
Statistical parsing allows to find the most probable
parse for any sentence

Treebanks

The Penn Treebank (Marcus et al. 1993, CL)
•  1M words from the 1987-1989 Wall Street Journal

newspaper
Many other projects since then
Torino Tree Bank (TUT) for Italian

((S (NP-SBJ (DT The) (NN move)) (VP (VBD followed)
(NP (NP (DT a) (NN round)) (PP (IN of) (NP <..>)) (. .))

Treebanks: why?

Building a treebank seems slower and less useful since it
cannot parse anything, unlike grammars..

But in reality, a treebank is an extremely valuable resource:
•  Reusability of the labor

•  Train parsers, POS taggers, etc
•  Linguistic analysis

•  Broad coverage, realistic data
•  Statistics for building parsers
•  A reliable way to evaluate systems

Statistical parsing: attachment
ambiguities

The key parsing decision: how we “attach” various
constituents?

Counting attachment ambiguities

How many distinct parses does this sentence have
due to PP attachment ambiguities?

Ambiguity: choosing the correct
parse

Ambiguity: choosing the correct
parse

Avoiding repeated work

Parsing involves generating and testing many
hypotheses, with considerable overlap. Once we’ve
build some good partial parse, we might want to re-
use it for other hypotheses.

Example: Cats scratch people with cats with claws.

Avoiding repeated work

Avoiding repeated work

CFG and PCFG
CFG Grammar

 S è NP VP (binary)
 NP è N (unary)
 NP è N N
 VP è V NP
 VP è V NP PP n-ary (n=3)

Lexicon
 N è Fed
 N è interest
 N è rates
 N è raises
 V è raises
 V è rates

Alternative parse: [Fed raises] interest [rates]

Context-Free Grammars (CFG)

G= <T,N,S,R>

T: set of terminal symbols

N: set of non-terminal symbols

S: starting symbol (“root”)

R: set of production rules X èγ

•  X ∈ N, γ∈ N∪T

A grammar G generates a language L.

Probabilistic (Stochastic) Context-
Free Grammars – PCFG
G= <T,N,S,R,P>
T: set of terminal symbols
N: set of non-terminal symbols
S: starting symbol (“root”)
R: set of production rules X èγ

P: a probability function R è[0,1]

A grammar G generates a language model L: for each sentence, it
generates a probabilistic distribution of parses

CFG and PCFG
PCFG Grammar

 S è NP VP 1.0
 NP è N 0.3
 NP è N N 0.7
 VP è V NP 0.9
 VP è V NP PP 0.1

Lexicon
 N è Fed 0.5
 N è interest 0.2
 N è rates 0.1
 N è raises 0.2
 V è raises 0.7
 V è rates 0.3

Alternative parse: [Fed raises] interest [rates]

Getting PCFG probabilities

•  Get a large collection of parsed sentences
(treebanks!)

•  Collect counts for each production rules

•  Normalize per X

•  Done!

Counting probabilities of trees and
strings

P(t) – the probability of a tree t is the product of the
probabilities of all the production rules of t.

P(s) – the probability of the string s is the sum of the
probabilities of the trees that yield s.

Where do we stand?

•  We can choose better parses according to a
PCFG grammar
•  Compute and compare tree probabilities based on the

individual probabilities of PCFG production rules

•  But we still do not know how to generate parse
candidate efficiently
•  Exponential number of possible trees

Cocke-Kasami-Younger Parsing (CKY)

•  Bottom-up parsing (starts from words)
•  Use dynamic programming to avoid repeated work

•  Operates on PCFGs transformed into the Chomsky
Normal Form (only binary and unary production rules)

•  Worst-time complexity:
•  Average-time complexity is better for more advanced

algorithms

CKY: parsing chart

 Fed raises interest rates

Filling the CKY chart

Objective: for each cell (== sequence of words), find its best
parse for each category, with probability

How to compute the best part for a cell spanning from word i
to word j?
•  Generate a split: <I,k> <k+1,j>
•  Check cells for <I,k> and for <k+1,j> -- they should contain

the best parses
•  Check production rules to find out how the best parses

can be combined

Filling the CKY chart

Objective: for each cell (== sequence of words), find
its best parse, with probability

•  Start with 1-word cells (lexicon probabilities)

•  Fill all 1-word cells

•  Proceed with 2-word cells, then 3-word cells etc

CKY parsing: example with CFG
Fed N

raises

V
N

interest

V
N

rates V
N

CKY parsing: example with CFG
Fed N N

NP

raises

V
N

V
N
NP

interest

V
N

V
N
NP
VP

rates V
N

V
N
NP
VP

CKY parsing: example with CFG
Fed N N

NP
NP

raises

V
N

V
N
NP

NP
VP

interest

V
N

V
N
NP
VP

NP
VP

rates V
N

V
N
NP
VP

CKY parsing: example with CFG
Fed N N

NP
NP NP

raises

V
N

V
N
NP

NP
VP

VP
NP

interest

V
N

V
N
NP
VP

NP
VP

rates V
N

V
N
NP
VP

CKY parsing: example with CFG
Fed N N

NP
NP NP

VP
?

raises

V
N

V
N
NP

NP
VP

VP
NP

interest

V
N

V
N
NP
VP

NP
VP

rates V
N

V
N
NP
VP

[Fed] [raises interest rates]
Fed N N

NP
NP NP S

raises

V
N

V
N
NP

NP
VP

VP
NP

interest

V
N

V
N
NP
VP

NP
VP

rates V
N

V
N
NP
VP

[Fed raises] [interest rates]
Fed N N

NP
NP NP S

raises

V
N

V
N
NP

NP
VP

VP
NP

interest

V
N

V
N
NP
VP

NP
VP

rates V
N

V
N
NP
VP

[Fed raises interest] [rates]
Fed N N

NP
NP NP

VP
 S

raises

V
N

V
N
NP

NP
VP

VP
NP

interest

V
N

V
N
NP
VP

NP
VP

rates V
N

V
N
NP
VP

CKY for PCFG: Viterbi decoding

For each symbol in each cell, only choose the parse
with the highest probability

How good are PCFG parsers?

Straightforward PCFG on Penn Treebank: 73% F

Main issue: strong independence assumption
(context free grammars). This helps reduce the
complexity, but it also introduces errors:

•  Agreement
e.g., “S->NP VP”, no constraint to prevent parses with
singular NP and plural VP

•  Subcategorization

Agreement

NP è DET N
DET è This
DET è These
N è cat
N è cats

This grammar overgenerates: it allows for phrases “this
cat”, “these cats”, but also for “this cats” and “these cat”.

Subcategorization

Possible expansions might differ for different words:
 Sneeze: John sneezed
 Find: Please find a flight to NY
 Give: Give me a cheaper fare
 Help: Can you help me with a flight?
 <..>

VP è V, VP è V NP PP, VP è V NP NP
 *John sneezed me with a cheaper fare
 *Give with a flight

Agreement/Subcategorization:
solutions

•  Within (P)CFG: create more specific labels

Old rule: NP è DET N

New rules: NP-sg è DET-sg N-sg,

 NP-pl è DET-pl N-pl

Agreement/Subcategorization:
solutions

 Create more specific labels

+ stays within the power of CFG (==efficient)

-  Ugly

-  Scalability issues: too many rules, too many
phenomena due to no lexicalization in the vanilla
PCFG

More issues..

•  Attachment ambiguity
 I’m eating sushi with tuna
 I’m eating sushi with friends

Problem: lexical items (words) are only used at a very low
level and cannot help the parser to make good decisions.

Solution: head-lexicalized PCFG, more expressive grammar
formalisms (HPSG, TAG,..)

Lexicalized PCFG: 88% on Penn Treebank

Head-lexicalized PCFG
Publicly available SOTA parsers: Charniak, Collins

Main idea: each constituent has a head. The head is a good representation of the
phrase’s structure and meaning. So, we can propagate the heads all the way up
the tree.

Old rule: NP è DET N
New rules: NP-cat è DET-cat N*-cat

Use smoothing to correctly estimate probabilities

Example – Charniak parser: 2-stage algorithm
•  Lexicalized PCFG generates n-best parses
•  MaxEnt choses the best one

Dependency parsing

Dependency structure:
•  nodes correspond to words
•  edges/arcs correspond to relations

Properties of the dependency graph:
•  connected
•  acyclic
•  single-head constraint for all nodes except for root

Dependency parsing

Projective vs. non-projective structures:

•  non-projective structures cannot be represented
without intersecting edges
•  Long-distance dependencies
•  Free word order languages

•  Modern SOTA parsers can produce non-
projective structures as well

Algorithms for dependency parsing

•  Dynamic programming: efficiently search a space
of trees to optimize some criterion
•  Dependencies as constituents (CKY-style) – Eisner
•  Sum of edge scores – Maximum Spaning Treee –

MST, Bohnet

•  Deterministic parsing: shift-reduce approach,
based on the current word and stated, use a
classifier to predict the next parsing step -- Malt

Evaluating parsing

Evaluation of constituency parsing:
bracketed P/R/F scores

Evaluation of constituency parsing:
bracketed P/R/F scores

 Gold brackets: S(0:11), NP(0:2), VP(2:9), VP(3:9),
NP (4:6), PP (6:9), NP (7,9), NP (9:10).

Candidate brackets: S(0:11), NP(0:2), VP(2:10),
VP(3:10) NP(4:6), PP (6:10), NP (7:10)

Evaluation of constituency parsing:
bracketed P/R/F scores

 Gold brackets: S(0:11), NP(0:2), VP(2:9), VP(3:9), NP
(4:6), PP (6:9), NP (7,9), NP (9:10).
Candidate brackets: S(0:11), NP(0:2), VP(2:10),
VP(3:10) NP(4:6), PP (6:10), NP (7:10)

Parseval measures
Labeled Precision: P=3/7=42.9%
Labeled Recall: R=3/8=37.5%
F=40.0%

Evaluation of dependency parsing:
labeled dependency accuracy

Tools

•  Charniak (constituent parser with discriminative reranker)
•  Stanford (provides constituent and dependency trees)

•  Berkeley (constituent parser with latent variables)

•  MST (dependency parser, needs POS tagged input)

•  Bohnet’s (dependency parser, needs POS tagged input)

•  Malt (dependency parser, needs POS tagged input)

Berkeley parser

"Learning Accurate, Compact, and Interpretable Tree Annotation"
Slav Petrov, Leon Barrett, Romain Thibaux and Dan Klein
in COLING-ACL 2006

and

"Improved Inference for Unlexicalized Parsing"
Slav Petrov and Dan Klein
in HLT-NAACL 2007

Downloading

Berkeley parser
http://code.google.com/p/berkeleyparser/
 -> parser
 -> English grammar

EVALB

http://nlp.cs.nyu.edu/evalb/
 -> “make” to install

Sample runs

Running the parser on a toy bnews test set:

java -Xmx2000m -jar

BerkeleyParser-1.7.jar -gr eng_sm6.gr

<prs-lab/data/bn_raw.test >bn_prs.out

Running EVALB to assess the performance:
./evalb -p sample/sample.prm ../prs-

lab/data/bn_prs.test ../bn_prs.out

Does it make sense?

•  Evaluation
•  EVALB, in a minute

•  Grammar

java -Xmx2000m -cp

BerkeleyParser-1.7.jar edu/berkeley/

nlp/PCFGLA/WriteGrammarToTextFile

eng_sm6.gr grammartxt

Learning a new grammar

java -Xmx2000m -cp BerkeleyParser-1.7.jar
edu.berkeley.nlp.PCFGLA.GrammarTrainer -path prs-
lab/data/bn_prs.train -out eng_bn.gr -treebank
SINGLEFILE
TIPS:
•  Don’t do it unless needed, precompiled grammars provide a

very good performance
•  Need a lot of training data!

WSJ: 1 million tokens, 40k sentences
•  Tagsets: data sparsity problem

You might have to simplify your tagset

Summary

•  Constituency vs. Dependency representation

•  Grammars, CFG

•  Treebanks and Probabilistic CFG

•  CKY parsing

•  Dependency parsing

•  Evaluating parsing

•  Parsing tools

