Natural Language Processing:
Introduction to Syntactic Parsing

Barbara Plank

DISI, University of Trento
barbara.plank@disi.unitn.it

NLP+IR course, spring 2012
Note: Parts of the material in these slides are adapted version of
slides by Jim H. Martin, Dan Jurasky, Christopher Manning

Today

Moving from words to bigger units
* Syntax and Grammars
 Why should you care?

 Grammars (and parsing) are key components in many NLP
applications, e.g.

— Information extraction
— Opinion Mining

— Machine translation

— Question answering

Overview

Key notions that we’ll cover
— Constituency
— Dependency
Approaches and Resources
— Empirical/Data-driven parsing, Treebank
Ambiguity / The exponential problem
Probabilistic Context Free Grammars
— CFG and PCFG
— CKY algorithm, CNF
Evaluating parser performance
Dependency parsing

Two views of linguistic structure:
1. Constituency (phrase structure)

The basic idea here is that groups of words within utterances
can be shown to act as single units

For example, it makes sense to the say that the following are
all noun phrases in English...

Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
they

three parties from Brooklyn

* Why? One piece of evidence is that they can all precede
verbs.

Two views of linguistic structure:
1. Constituency (phrase structure)

* Phrase structure organizes words into nested constituents.

* How do we know what is a constituent? (Not that linguists
don’t argue about some cases.)

— Distribution: a constituent behaves as a unit that S
can appear in different places:
* John talked [to the children] [about drugs]. VP
* John talked [about drugs] [to the children].
« *John talked drugs to the children about /\NP
— Substitution/expansion/pro-forms: /\
* | sat [on the box/right of the box/there]. N \ N N

| | | |
Fed raises interest rates

Headed phrase structure

To model constituency structure:

S
VP —> ... VB* ... /\
NP — ... NN* ... NP VP
ADJP —> ... JJ* .. TN
N V NP
ADVP — ... RB* ... | /\
PP —> ... IN* .. Fed raises N N

interest rates

Bracket notation of a tree (Lisp S-structure):
(S (NP (N Fed)) (VP (V raises) (NP (N interest) (N rates)))

Two views of linguistic structure:
2. Dependency structure

In CFG-style phrase-structure grammars the main focus is on
constituents.

But it turns out you can get a lot done with binary relations
among the lexical items (words) in an utterance.

In a dependency grammar framework, a parse is a tree where
— the nodes stand for the words in an utterance
— The links between the words represent dependency
relations between pairs of words.
* Relations may be typed (labeled), or not. /_\
dependent head
modifier governor

Sometimes arcs drawn
in opposite direction

ROOT The boy put the tortoise on the rug

Two views of linguistic structure:
2. Dependency structure

* Alternative notations (e.g. rooted tree):

VSV A

ROOT The boy put the tortoise on the rug

put
/\

boy tortoise on

—

The the }"g

the

Dependency Labels

Argument dependencies:
« Subject (subj), object (obj), indirect object (iobj)...
Modifier dependencies:

 Determiner (det), noun modifier (nmod),
verbal modifier (vmod), etc.

root

@ obj

VERERR Ve CV
ROOT A boy paints the wall

Quiz question

* In the following sentence, which word is nice a dependent of?

N

There is a nice warm breeze out in the balcony.

1. warm
2. In
3. breeze

4. balcony

Comparison

 Dependency structures explicitly represent
— head-dependent relations (directed arcs),
— functional categories (arc labels).

* Phrase structures explicitly represent
— phrases (nonterminal nodes),
— structural categories (nonterminal labels),

— possibly some functional categories (grammatical
functions, e.g. PP-LOC).

e (There exist also hybrid approaches, e.g. Dutch Alpino
grammar).

Statistical Natural Language
Parsing

Parsing: The rise of data and statistics

The rise of data and statistics:
Pre 1990 (“Classical”) NLP Parsing

* Wrote symbolic grammar (CFG or often richer) and lexicon

S—> NP VP NN — interest
NP — (DT) NN NNS — rates
NP — NN NNS NNS — raises
NP — NNP VBP — interest
VP —> V NP VBZ — rates

* Used grammar/proof systems to prove parses from words

* This scaled very badly and didn’t give coverage.

Classical NLP Parsing:
The problem and its solution

Categorical constraints can be added to grammars to limit
unlikely/weird parses for sentences
— But the attempt make the grammars not robust

* |In traditional systems, commonly 30% of sentences in even an edited
text would have no parse.

A less constrained grammar can parse more sentences

— But simple sentences end up with ever more parses with no way
to choose between them

We need mechanisms that allow us to find the most likely parse(s)
for a sentence

— Statistical parsing lets us work with very loose grammars that
admit millions of parses for sentences but still quickly find the
best parse(s)

The rise of annotated data:
The Penn Treebank

[Marcus et al. 1993, Computational Linguistics]

((S
(NP-SBJ (DT The) (NN move))

(VP (VBD followed)
(NP
(NP (DT a) (NN round))
(PP (IN of)
(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)
(NP (JJ other) (NNS lenders)))

(PP (IN against)

0 (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))

(S-ADV Most well known part is the
%UE'&,BBJé"r\‘e%QCEt}:g)g Wall Street Journal section of
(IZII\ITP (DT a) (VBG continuing) (NN decline)) efennliechant
(PP-LOC (IN in) 1 M words from the
gy (BT Ehat) (NN market)) 1987-1989 Wall Street
Journal newspaper.

The rise of annotated data

e Starting off, building a treebank seems a lot slower and less
useful than building a grammar

* But a treebank gives us many things

— Reusability of the labor
* Many parsers, POS taggers, etc.
* Valuable resource for linguistics

— Broad coverage
— Statistics to build parsers
— A way to evaluate systems

Statistical Natural Language
Parsing

An exponential number of
attachments

Attachment ambiguities

* A key parsing decision is how we ‘attach’ various constituents

The board approved [its acqmby Royal Trustco Ltd.]

*\/ \ L[of Toronto]

[for $27 a share]

at its monthly meeting].

Attachment ambiguities

« How many distinct parses does the following
sentence have due to PP attachment
ambiguities?

John wrote the book with a pen in the room.

John wrote [the book] [with a pen] [in the room].
John wrote [[the book] [with a pen]] [in the room]. 11
John wrote [the book] [[with a pen] [in the room]]. 5,
John wrote [[the book] [[with a pen] [in the room]]]. 35
John wrote [[[the book] [with a pen]] [in the room]]. 414

542
Catalan numbers: C, = (2n)/[(n+1)!n'] - an exponentially growing series 6132

7429
8 1430

Two problems to solve:
1. Avoid repeated work...

S
NP VP
N VP PP
cats V NP P NP
scratch N with NP PP
people N P NP
cats with N
claws
S
NP VP
N VP
cdts VP PP
V NP P NP
scratch N with N
people cats

cats

VP
v

scratch NP

people

PP

with N

claws

NP
PP
P NP
with NP PP
N P NP
cats with N
claws
NP
N
cats \Y
Scratch

S
NP VP
N V
cats scratch NP
NP PP
N P
people with
S
VP
VP
NP
NP PP
N P NP
people with N

cats

NP

NP

cats

with

FP

with N

claws

PP
NP

claws

Two problems to solve:
1. Avoid repeated work...

NP VP

NP VP S

N \' NP VP

cats V

cats scratch NP

N Vv

NP

scratch

cats scratch

NP

N P

people with

NP

cats

NP
with N
N P

cats

people with N

S > NP VP
NP = Det N
NP = NP PP
VP =2 V NP
VP - VP PP
PP > P NP

Two problems to solve:
2. Ambiguity - Choosing the correct parse

S

T

NP

Papa

ate

VP

VP PP
V NP p NP

N

Det

the

N

caviar

VN

with Det

d

N

spoon

NP - Papa
N = caviar
N = spoon
V = spoon
V - ate

P = with
Det 2 the
Det 2 a

Two problems to solve:
2. Ambiguity - Choosing the correct parse

S > NP VP
NP > Det N
NP > NP PP
VP > V NP NP
VP > VP PP |
PP > P NP
Papa V
I
ate

- need an efficient algorithm: CKY

S

the

T

VP

—\

NP

NP/\
N N
VN

caviar

with Det

|
a

N

|
spoon

NP - Papa
N = caviar
N = spoon
V = spoon
V - ate

P = with
Det 2 the
Det 2 a

Syntax and Grammars

CFGs and PCFGs

A phrase structure grammar

Grammar rules Lexicon

S —> NPVP N — people

VP — V NP N — fish

VP — V NP PP n-ary (n=3) N — tanks

NP — NP NP binary N — rods

NP — NP PP V — people

NP — N unary V — fish

PP — P NP V — tanks
P — with

people fish tanks
people fish with rods

Phrase structure grammars
= Context-free Grammars (CFGs)

* G=(T,N,S,R)
— T is a set of terminal symbols
— N is a set of nonterminal symbols
— Sis the start symbol (S € N)

— Ris a set of rules/productions of the form X — vy
* XENandy€e (NUT)*

 Agrammar G generates a language L.

Probabilistic — or stochastic — Context-
free Grammars (PCFGs)

 G=(T,N,S,R,P)
— T is a set of terminal symbols
— N is a set of nonterminal symbols
— Sis the start symbol (S € N)
— Ris a set of rules/productions of the form X — vy

— P is a probability function
* P:R—[0,1]

VX E N, EP(Xey)=1
X —=yER
 Agrammar G generates a language model L.

ZSET* P(S) =1

Example PCFG

S —> NP VP 1.0 N — people 0.5
VP — V NP 0.6 N — fish 0.2
VP — V NP PP 0.4 N — tanks 0.2
NP NP N — rods 0.1

NP PP Vo p-eople 0.1

V — fish 0.6

N V — tanks 0.3

PP —> P NP 1.0 P s with 10

Getting the probablities:

* Get a large collection of parsed sentences (treebank)
*Collect counts for each non-terminal rule expansion in
the collection

*Normalize

*Done

The probability of trees and strings

 P(t) - The probability of a tree t is the product of
the probabilities of the rules used to generate it.

* P(S5) - The probability of the string s is the sum of
the probabilities of the trees which have that string
as their yield

P(s) = 2, P(s, t) where tis a parse of s
J
= 2; P(t)

NPq 7 VPo 4

T T

Nos Vo NPo.7 PP1.0

T N

people fish No2» Pi1o NPg7

tanks with No 1

rods

51.0

T

NPg 7 VPo 6

‘ /\

Nos Vos NPo.2

| | T

people fish NPq7 PP o

N

No2 P10 NPo7

tanks with No 1

rods

Tree and String Probabilities

s = people fish tanks with rods
P(t;) =1.0X0.7xX0.4 X0.5XxX0.6%X0.7
X 1.0X 0.2 X1.0X0.7 %01 Verb attach
= 0.0008232
P(t,) =1.0X0.7X 0.6 X0.5X0.6 X0.2
X 0.7 X 1.0 X0.2 X1.0Xx 0.7 X 0.1 Noun attach
= 0.00024696
P(s) = P(t;) + P(t)
= 0.0008232 + 0.00024696
= 0.00107016
PCFG would choose t1

Grammar
Transforms

Restricting the grammar form for
efficient parsing

Chomsky Normal Form

All rules are of the formX —>YZorX —>w
— X, YYZENandweT

A transformation to this form doesn’t change the weak
generative capacity of a CFG

— That is, it recognizes the same language

e But maybe with different trees

Empties and unaries are removed recursively
NP — e emtpy rule (imperative w/ empty subject: fish!)
NP — N unary rule

n-ary rules (for n>2) are divided by introducing new
nonterminals: A->BCD A->B@C @C->CD

CKY Parsing

Polynomial time parsing of
(P)CFGs

Dynamic Programming

e We need a method that fills a table with partial results that
— Does not do (avoidable) repeated work
— Solves an exponential problem in (approximately)

polynomial time PCFG
> Rule Prob 6,
/\VP S — NP VP 0,
NP — NP NP 0,
NP NP
N N Vv N N — fish 0,,
_’ | .l N — people 0,5
fish people fish tanks

V —> fish 0,4

Cocke-Kasami-Younger (CKY)
Constituency Parsing

Parsing chart
Cells over spans of words

T T TN 1 7.~
L N HEEERERERRE’S b WNNNEENRE AN OEERE

fish people fish tanks

Viterbi (Max) Scores

Just store best way of making S

*0.14 * 0.1 = 0.0049
4 *0.5=0.007

S — NP VP 0.9

, S— VP 0.1

a0 VP — V NP 0.5

. VP >V 0.1

4 , VP >V @VP_V 0.3

N R VP — VPP 0.1

@VP_V — NP PP 1.0
NP — NP NP 0.1
NP — NP PP 0.2
NP — N 0.7

pe0p|e fish PP — P NP 1.0

Extended CKY parsing

* Original CKY only for CNF
— Unaries can be incorporated into the algorithm easily
* Binarization is vital

— Without binarization, you don’t get parsing cubic in the
length of the sentence and in the number of nonterminals
in the grammar

The CKY algorithm (1960/1965)
... extended to unaries

function CKY(words, grammar) returns [most_probable_parse,prob]
score new double[#(words)+1][#(words)+1][#(nonterms)]
back = new Pair[#(words)+1][#(words)+1][#nonterms]]
for 1=0; i<#(words); 1i++
for A in nonterms
if A -> words[i] 1n grammar
score[i][i+1][A] = P(CA -> words[i])
//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
if score[i][i+1][B] > 0 && A->B in grammar
prob = P(A->B) *score[i][71+1][B]
if prob > score[i1][1+1][A]
score[1][1+1][A] = prob
back[i][i+1][A] = B
added = true

The CKY algorithm (1960/1965)
... extended to unaries

for span = 2 to #(words) (1,7) (1,7)
7\

for begin = 0 to #(words)- span N\
O(n”3) end = begin + span (1,2)(2,7) (1,4)(4,7)
cubic for split = begin+1l to end-1
for A,B,C in nonterms
prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
if prob > score[begin][end][A]
score[begin]end] [A] = prob
back[begin][end] [A] new Triple(split,B,C)
//handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
prob = P(A->B)*score[begin][end][B];
if prob > score[begin][end][A]
score[begin][end][A] = prob
back[begin][end][A] = B
added = true
return buildTree(score, back)

Quiz Question!

PP — IN 0.002
NP — NNS NNS 0.01
NP — NNS NP 0.005
NP — NNS PP 0.01
VP — VB PP 0.045

>>>>>>>>>>>> What
| constituents
(with what
probability can
you make?

runs down

CKY Parsing

A worked example

The grammar

S— NP VP 0.9 N — people 0.5
S — VP 0.1 ,

VP — V NP 0.5 N — fish 0.2
VP — V 0.1 N — tanks 0.2
VP >V @VP_V 0.3 N — rods 0.1
VP — V PP 0.1

@VP_V — NP PP 1.0 V — people 0.1
NP—NPNP 0.1 V — fish 0.6

NP — NP PP 0.2 v ks 0.3
NP — N 0.7 — tanks '

PP — P NP 1.0 P—o>with 1.0

fish 1 people 2 fish 3 tanks 4
score[0][1] | score[0][2] | score[0][3] | score[0][4]
score[1][2] score[1][3] score[1][4]

score[2][3] score(2][4]

score[3][4]

S—> NP VP

S—> VP
VP — V NP

VP >V

VP >V @VP_V
VP —V PP
@VP_V — NP PP
NP — NP NP
NP — NP PPO0.2
NP —> N

PP —> P NP

N — people 0.5
N — fish

N — tanks

N — rods

V — people 0.1
V — fish

V — tanks 0.3
P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1

0.7

1.0

0.2
0.2
0.1
0.6

1.0

fish 1 people

2

fish

3

tanks

4

3

for i=0; i<#(words); i++
for A'in nonterms
if A -> wordsJi] in grammar
score]i][i+1][A] = P(A -> words][i]);

S—> NP VP

S—> VP
VP — V NP

VP >V

VP >V @VP_V
VP —V PP
@VP_V — NP PP
NP — NP NP
NP — NP PPO0.2
NP —> N

PP —> P NP

N — people 0.5
N — fish

N — tanks

N — rods

V — people 0.1
V — fish

V — tanks 0.3
P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1

0.7

1.0

0.2
0.2
0.1
0.6

1.0

fish 1 people

2 fish

tanks

4

N — fish 0.2
V — fish 0.6

N — people 0.5
V — people 0.1

/[l handle unaries
boolean added = true
while added
added = false
for A, B in nonterms
if score[i][i+1][B] > 0 && A->B in grammar
prob = P(A->B)*score[i][i+1][B]
if(prob > scorel[i][i+1][A])
score(i][i+1][A] = prob
back]i][i+1][A] = B
added = true

N — fish 0.2
V — fish 0.6

N — tanks 0.2
V — tanks 0.1

S— NP VP
S—>VP

VP — V NP

VP -V

VP >V @VP_V
VP — V PP
@VP_V —> NP PP
NP — NP NP
NP — NP PP0.2
NP — N

PP — P NP

N — people 0.5
N — fish

N — tanks

N — rods

V — people 0.1
V — fish

V — tanks 0.3
P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1

0.7

1.0

0.2
0.2
0.1
0.6

1.0

0 fish people 2 fish tanks 4
N — fish 0.2
V — fish 0.6
NP —> N O0.14
VP — V 0.06
1 S — VP 0.006
N — people 0.5
V — people 0.1
NP — N 0.35
VP >V 0.01
2 S—> VP 0.001
N — fish 0.2
V — fish 0.6
NP —> NO0.14
VP — V 0.06
3 S — VP 0.006
N — tanks 0.2
prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
if (prob > score[begin][end][A]) V—tanks 0.1
score[begin]end][A] = prob NP — N 0.14
back[begin][end][A] = new Triple(split,B,C) VP -V 0.03
S — VP 0.003

4

S—> NP VP

S—> VP
VP — V NP

VP >V

VP >V @VP_V
VP —V PP
@VP_V — NP PP
NP — NP NP
NP — NP PPO0.2
NP —> N

PP —> P NP

N — people 0.5
N — fish

N — tanks

N — rods

V — people 0.1
V — fish

V — tanks 0.3
P — with

fish 1 people 2 fish tanks 4
0.9 0
0.1 N — fish 0.2 NP — NP NP
0.5 V — fish 0.6 0.0043
01 NP —> N O VP—>VON1P .
0.3 VP2Y0.06 g npve
0.1 1 VP 0.006 0.00126
1.0 / N — people 0.5 |NP— NP NP
0.1 V — people 0.1 0.0049
' 0.007
0.7 VP -V 0.01 S s NP VP
1.0 2 S— VP 0.001 0.0189
N — fish 0.2 NP — NP NP
V — fish 0.6 0.00196
0.2 NP—>NO.14 |VP7 Vo'\'g42
0.2 //handle unaries VP — V 0.06 S5 NP V.P
0.1 boolean added = true S — VP 0.006
3 | while added Lo
added = false N — tanks 0.2
0.6 for A, B in nonterms V — tanks 0.1
prob = P(A->B)*score[begin][end][B];)
if prob > score[begin][end][A] NP — N 0.14
1.0 score[begin][end][A] = prob VP —- V 0.03
back[begin][end][A] = B S — VP 0.003

added = true

S—> NP VP

S—> VP
VP — V NP

VP >V

VP >V @VP_V
VP —V PP
@VP_V — NP PP
NP — NP NP
NP — NP PPO0.2
NP —> N

PP —> P NP

N — people 0.5
N — fish

N — tanks

N — rods

V — people 0.1
V — fish

V — tanks 0.3
P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1

0.7

1.0

0.2
0.2
0.1
0.6

1.0

fish 1 people 2 fish tanks
N — fish 0.2 NP — NP NP
V — fish 0.6 0.0049
NP —>NO0.14 |VP— VONl"OS
VP —- V 0.06 S 5 VP
S — VP 0.006 00105
N — people 0.5 |[NP— NP NP
V — people 0.1 0.0049
NP>NO035 |VP— VONgm
VP -V 0.01 S 5 NP VP
S — VP 0.001 0.0189
N — fish 0.2 NP — NP NP
V — fish 0.6 0.00196
NP >NO0.14 |VP— Vo'\'g42
VP — V 0.06 S 5 VP
S — VP 0.006 0.0042
N — tanks 0.2
for split = begin+1 to end-1 V — tanks 0.1
for A,B,C in nonterms
orob=score[begin][split] B]*score[split]lend][C]*P(A->BC) | | NP —> N0.14
if prob > score[begin][end][A] VP -V 0.03
score[begin]end][A] = prob S — VP 0.003

back[begin][end][A] = new Triple(split,B,C)

S—> NP VP

S—> VP
VP — V NP

VP >V

VP >V @VP_V
VP —V PP
@VP_V — NP PP
NP — NP NP
NP — NP PPO0.2
NP —> N

PP —> P NP

N — people 0.5
N — fish

N — tanks

N — rods

V — people 0.1
V — fish

V — tanks 0.3
P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1

0.7

1.0

0.2
0.2
0.1
0.6

1.0

0 fish 1 people 2 fish 3 tanks
N — fish 0.2 NP — NP NP NP — NP NP
V s fish 0.6 10049 0.0000686
NP — N 0.14 VP —V NP VP — VN
' 0.105 0.00147
VP V006 il e S—> NPV
1|S — VP 0.006 0.0105 0.000882
N — people 0.5 | NP — NP NP
V — people 0.1 0.0049
NP—>NO035 |VP VONg ,
VP -V 0.01 S 5 NP VP
p) S — VP 0.001 0.0189
N — fish OE NP — NP NP
V — fish 0 0.00196
NP —>NO.14 |VP— VON(F)’42
VP — V 0.06 S5 VP
3 S — VP 0.006 0.0042
N — tanks 0.2
for split = bggin+1 to end-1 V — tanks 0.1
for A,B,C in nonterms
prob=score[begin][split] B]*score[split]end][C*P(A->BC) | | NP —> N0.14
if prob > score[begin][end][A] VP -V 0.03
score[begin]end][A] = prob S — VP 0.003
4 back[begin][end][A] = new Triple(split,B,C)

S—> NP VP

S—> VP
VP — V NP

VP >V

VP >V @VP_V
VP —V PP
@VP_V — NP PP
NP — NP NP
NP — NP PPO0.2
NP —> N

PP —> P NP

N — people 0.5
N — fish

N — tanks

N — rods

V — people 0.1
V — fish

V — tanks 0.3
P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1

0.7

1.0

0.2
0.2
0.1
0.6

1.0

0 fish people 2 fish tanks
N — fish 0.2 NP — NP NP NP — NP NP
V — fish 0.6 0.0049 0.0000686
NP —> N 0.14 VP — V NP VP — V NP
' 0.105 0.00147
wl o Wb S — VP S—> NP VP
1|S — VP 0.006 0.0105 0.000882
N — people 0.5 | NP — NP NP NP — NP NP
V — people 0.1 0.0049 0.0000686
NP —> N 0.35 VP — V NP VP — V NP
' 0.007 0.000098
Ve = Vi0.01 S—> NP VP S—> NP VP
2 S — VP 0.001 0.0189 0.01323
N — fish 0.2 NP — NP NP
V — fish 0.6 0.00196
NP—>NO014 VPO VON(F)’42
VP —> V 0.06 S 5 VP
3 S — VP 0.006 0.0042
N — tanks 0.2
for split = bggin+1 to end-1 V — tanks 0.1
for A,B,C in nonterms
prob=score[begin][split] B]*score[split]end][C*P(A->BC) | |NP —> N0.14
if prob > score[begin][end][A] VP -V 0.03
score[begin]end][A] = prob S — VP 0.003

4 back[begin][end][A] = new Triple(split,B,C)

S—> NP VP

S—> VP
VP — V NP

VP >V

VP >V @VP_V
VP —V PP
@VP_V — NP PP
NP — NP NP
NP — NP PPO0.2
NP —> N

PP —> P NP

N — people 0.5
N — fish

N — tanks

N — rods

V — people 0.1
V — fish

V — tanks 0.3
P — with

0.9
0.1
0.5
0.1
0.3
0.1
1.0
0.1

0.7

1.0

0.2
0.2
0.1
0.6

1.0

2

fish 1 people 2 fish 3 tanks 4
N — fish 0.2 __[INP—NP NP N — fish 0.2 NP — NP NP
V — fish 0.6 0.0p49 —> fish 0.6 0.0000009604
NP>NO.14 [|VPRVNE M 0 e02058
VP —> V 0.06 S 5 VP VP — V 0.06 S NP VP
S — VP 0.006 0b10s |S—> VP 0.006 0.0d018522
N — pebple 0.5 |NP —> NP NP NP — NP|NP
' 0.007 0/000098
WP = 1 (0L S—> NP VP S —> NP \/P
5— VP 0.001 0.0189 0,01323
3 split points N—fish0.2 |[NP—NRNP
Same as before V — fish 0.6 00196
6. |
NP—>NO0.14 |P VONP42
At the end backtrace VP —V 0.06 S VP |
3 to get highest prob parse 5— VP 0.006 0/0042
N — tanks 0.2
Actually store spans V — tanks 0.1
S(0,4) -> NP(0,2) VP(2,4) 2= B LI
VP -V 0.03
S — VP 0.003

4

Call buildTree(score, back) to get the best parse

Parser Evaluation

Measures to evaluate constituency
and dependency parsing

Evaluating Parser Performance

correct test trees (gold standard)

P

test mommm — — /
sentences

Grammar

N EEE —

— Evaluation scores

VMW
= O—=QO0OOW

Evaluation of Constituency Parsing:
bracketed P/ R/ F -score

Gold standard brackets: S-(0:11), NP-(0:2), VP-(2:9), , NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)
|
S
—_—
NP VP NP .
NNS NNS VBD VP NN .11
I I [— 7 I
o Sales ; executives , were VBG NP PP yesterday 19
3 examining DT NNS IN NP

|] | | —
4 the 5 figuresg with JJ NN
| |
7 great g care g

Candidate brackets: S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)
|
S
R
NP VP i
NNS NNS VBD VP - 11
I | I —_—
o Sales ; executives » were VBG NP PP
| — —_—
3 examining DT NNS IN NP

4 the s figuresg with]J NN NN
| I |
7 great g care g yesterday 19

Evaluation of Constituency Parsing:
bracketed P/R/F-score

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6-9), NP-(7,9), NP-(9:10)
Candidate brackets:

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)

Labeled Precision 3/7=42.9%
Labeled Recall 3/8=37.5%
F1 40.0%

(Parseval measures)

Evaluation of Dependency Parsing:
(labeled) dependency accuracy

root dobj

det
nmo

subj

lecture

Unlabeled Attachment Score (UAS)
Labeled Attachment Score (LAS)
Label Accuracy (LA)

UAS=4/5 = 80%
LAS = 2/5 = 40%
LA=3/5=60%

ROOT She saw the video
0 1 2 3 4

Gold

1 She 2 subj

2 saw 0 root

3 the) det

4 video) nmod

5 lecture 2 dobj

Parsed

OO WDN -

She 2 subj
saw 0 root
the 4 det
video) vmod
lecture 2 fole]

How good are PCFGs?

« Simple PCFG on Penn WSJ: about 73% F1
« Strong independence assumption

— S ->VP NP (e.g. independent of words)
« Potential issues:

— Agreement

— Subcategorization

Agreement

*This dog
*Those dogs

*This dog eats
*Those dogs eat

For example, in English, determiners
and the head nouns in NPs have to
agree in their number.

**This dogs
**Those dog

**This dog eat
**Those dogs eats

* Our earlier NP rules are clearly
deficient since they don’t capture
this constraint

— NP —DTN

* Accepts, and assigns correct
structures, to grammatical
examples (this flight)

e Butits also happy with incorrect
examples (*these flight)

— Such arule is said to overgenerate.

Subcategorization

Sneeze: John sneezed

Find: Please find [a flight to NY],

Give: Give [me][a cheaper fare],

Help: Can you help [me][with a flight],,
Prefer: | prefer [to leave earlier];o.p
Told: | was told [United has a flight]

*John sneezed the book
*| prefer United has a flight
*Give with a flight

Subcat expresses the constraints that a predicate (verb for now)
places on the number and type of the argument it wants to take

Possible CFG Solution

 Possible solution for
agreement.

e Can use the same trick
for all the verb/VP
classes.

SgS -> SgNP SgVP

PIS -> PINp PIVP

SgNP -> SgDet SgNom
PINP -> PIDet PINom
PIVP -> PIV NP

SgVP ->SgV Np

CFG Solution for Agreement

It works and stays within the power of CFGs
But its ugly

And it doesn’t scale all that well because of the interaction
among the various constraints explodes the number of rules
In our grammar.

Alternatives: head-lexicalized PCFG, parent annotation, more
expressive grammar formalism (HPSG, TAG, ...)

—> lexicalized PCFGs reach ~88% Fscore (on PT WSJ)

(Head) Lexicalization of PCFGs

[Magerman 1995, Collins 1997; Charniak 1997]

The head word of a phrase gives a good representation of the
phrase’s structure and meaning

Puts the properties of words back into a PCFG
Swalked

N|PSue VP alked
/’_,—I"—-\\\

NIbl““)Sue V]?Dwaiked PPinto
Sue walked Pinto NPstore
| N
into DT¢he NNstore
I I
e Charniak Parser: two stage parser the store
1.

lexicalized PCFG (generative model) generates n-best parses
2. disambiguator (discriminative MaxEnt model) to choose parse

Dependency Parsing

A brief overview

Dependency Parsing

« Adependency structure can be defined as a directed graph G,
consisting of:

— aset V of nodes,
— a set E of (labeled) arcs (edges)

A graph G should be: connected (For every node i there is a
node j such thati - jorj— i), acyclic (no cycles) and single-
head constraint (have one parent, except root token).

 The dependency approach has a number of advantages over
full phrase-structure parsing.

— Better suited for free word order languages

— Dependency structure often captures the syntactic relations
needed by later applications

* CFG-based approaches often extract this same information from
trees anyway

Dependency Parsing

* Modern dependency parsers can produce either projective or
non-projective dependency structures

pC

Vg

sbj obj

nmodlnmod

What did economic news have little effect on 7

* Non-projective structures have crossing edges

nmod

— long-distance dependencies

— free word order languages, e.g. Dutch
vs. English: only specific adverbials before VPs:

* Hij heeft waarschijnlijk een boek gelezen He probably read a book.
* Hij heeft gisteren een boek gelezen *He yesterday read a book.

Dependency Parsing

* There are two main approaches to dependency parsing
— Dynamic Programming:
Optimization-based approaches that search a space of trees for
the tree that best matches some criteria

* Treat dependencies as constituents, algorithm similar to CKY plus
improved version by Eisner (1996).

find best tree: Maximum spanning tree algorithms /" \
20 T o

saw

* Score of a tree = sum of scores of edges /;:\g
* Examples: MST (Ryan McDonald), Bohnet parser 9\. VARVAN N
John __ 30

0 __Mary
_‘”4___/
c e . . K:ﬁj
— Deterministic parsing:

Shift-reduce approaches that greedily take actions based on the
current word and state (abstract machine, use classifier to
predict next parsing step)

* Example: Malt parser (Joakim Nivre)

Tools

Charniak Parser (constituent parser with discriminative
reranker)

Stanford Parser (provides constituent and dependency trees)
Berkeley Parser (constituent parser with latent variables)

MST parser (dependency parser, needs POS tagged input)
Bohnet’s parser (dependency parser, needs POS tagged input)
Malt parser (dependency parser, needs POS tagged input)

Summary

Context-free grammars can be used to model various
facts about the syntax of a language.

When paired with parsers, such grammars constitute a
critical component in many applications.

Constituency is a key phenomena easily captured with
CFG rules.

— But agreement and subcategorization do pose significant
problems

Treebanks pair sentences in corpus with their
corresponding trees.

CKY is an efficient algorithm for CFG parsing
Alternative formalism: Dependency structure

Reference & credits

 Jurafsky & Manning (2" edition) chp 12, 13 & 14

* Thanks to Jim H. Martin, Dan Jurafsky, Christopher Manning,
Jason Eisner, Rada Mihalcea for making their slides available

— http://www.cs.colorado.edu/~martin/csci5832/lectures_and
_readings.html

— http://www.nlp-class.org (coursera.org)
— http://www.cse.unt.edu/~rada/CSCE5290/
— http://www.cs.jhu.edu/~jason/465/

