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Abstract

We study an approach to text categorization that combines distributional clustering of
words and a Support Vector Machine (SVM) classifier. This word-cluster representation is
computed using the recently introduced Information Bottleneck method, which generates
a compact and efficient representation of documents. When combined with the classifica-
tion power of the SVM, this method yields high performance in text categorization. This
novel combination of SVM with word-cluster representation is compared with SVM-based
categorization using the simpler bag-of-words (BOW) representation. The comparison is
performed over three known datasets. On one of these datasets (the 20 Newsgroups) the
method based on word clusters significantly outperforms the word-based representation
in terms of categorization accuracy or representation efficiency. On the two other sets
(Reuters-21578 and WebKB) the word-based representation slightly outperforms the word-
cluster representation. We investigate the potential reasons for this behavior and relate it
to structural differences between the datasets.

1. Introduction

The most popular approach to text categorization has so far been relying on a simple
document representation in a word-based ‘input space’. Despite considerable attempts to
introduce more sophisticated techniques for document representation, like ones that are
based on higher order word statistics (Caropreso et al., 2001), NLP (Jacobs, 1992; Basili
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et al., 2000), “string kernels” (Lodhi et al., 2002) and even representations based on word
clusters (Baker and McCallum, 1998), the simple minded independent word-based repre-
sentation, known as Bag-Of-Words (BOW), remained very popular. Indeed, to-date the
best categorization results for the well-known Reuters-21578 and 20 Newsgroups datasets
are based on the BOW representation (Dumais et al., 1998; Weiss et al., 1999; Joachims,
1997).

In this paper we empirically study a familiar representation technique that is based
on word-clusters. Our experiments indicate that text categorization based on this repre-
sentation can outperform categorization based on the BOW representation, although the
performance that this method achieves may depend on the chosen dataset. These empirical
conclusions about the categorization performance of word-cluster representations appear
to be new. Specifically, we apply the recently introduced Information Bottleneck (IB)
clustering framework (Tishby et al., 1999; Slonim and Tishby, 2000, 2001) for generating
document representation in a word cluster space (instead of word space), where each cluster
is a distribution over document classes. We show that the combination of this IB-based rep-
resentation with a Support Vector Machine (SVM) classifier (Boser et al., 1992; Schölkopf
and Smola, 2002) allows for high performance in categorizing three benchmark datasets: 20
Newsgroups (20NG), Reuters-21578 and WebKB. In particular, our categorization of 20NG
outperforms the strong algorithmic word-based setup of Dumais et al. (1998) (in terms
of categorization accuracy or representation efficiency), which achieved the best reported
categorization results for the 10 largest categories of the Reuters dataset.

This representation using word clusters, where words are viewed as distributions over
document categories, was first suggested by Baker and McCallum (1998) based on the
‘distributional clustering’ idea of Pereira et al. (1993). This technique enjoys a number
of intuitively appealing properties and advantages over other feature selection (or gener-
ation) techniques. First, the dimensionality reduction computed by this word clustering
implicitly considers correlations between the various features (terms or words). In contrast,
popular ‘filter-based’ greedy approaches for feature selection such as Mutual Information,
Information Gain and TFIDF (see, e.g., Yang and Pedersen, 1997) only consider each
feature individually. Second, the clustering that is achieved by the IB method provides
a good solution to the statistical sparseness problem that is prominent in the straightfor-
ward word-based (and even more so in n-gram-based) document representations. Third, the
clustering of words generates extremely compact representations (with minor information
compromises) that enable strong but computationally intensive classifiers. Besides these
intuitive advantages, the IB word clustering technique is formally motivated by the Infor-
mation Bottleneck principle, in which the computation of word clusters aims to optimize a
principled target function (see Section 3 for further details).

Despite these conceptual advantages of this word cluster representation and its success
in categorizing the 20NG dataset, we show that it does not improve accuracy over BOW-
based categorization, when it is used to categorize the Reuters dataset (ModApte split)
and a subset of the WebKB dataset. We analyze this phenomenon and observe that the
categories of documents in Reuters and WebKB are less “complex” than the categories
of 20NG in the sense that documents can almost be “optimally” categorized using a small
number of keywords. This is not the case for 20NG, where the contribution of low frequency
words to text categorization is significant.
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The rest of this paper is organized as follows. In Section 2 we discuss the most relevant
related work. Section 3 presents the algorithmic components and the theoretical foundation
of our scheme. Section 4 describes the datasets we use and their textual preprocessing in
our experiments. Section 5 presents our experimental setup and Section 6 gives a detailed
description of the results. Section 7 discusses these results. Section 8 details the computa-
tional efforts in these experiments. Finally, in Section 9 we conclude and outline some open
questions.

2. Related results

In this section we briefly overview results which are most relevant for the present work.
Thus, we limit the discussion to relevant feature selection and generation techniques, and
best known categorization results over the corpora we consider (Reuters-21578, the 20
Newsgroups and WebKB). For more comprehensive surveys on text categorization the reader
is referred to Sebastiani (2002); Singer and Lewis (2000) and references therein. Throughout
the discussion we assume familiarity with standard terms used in text categorization.1

We start with a discussion of feature selection and generation techniques. Dumais et al.
(1998) report on experiments with multi-labeled categorization of the Reuters dataset. Over
a BOW binary representation (where each word receives a count of 1 if it occurs once or
more in a document and 0 otherwise) they applied the Mutual Information index for feature
selection. Specifically, let C denote the set of document categories and let Xc ∈ {0, 1} be
a binary random variable denoting the event that a random document belongs (or not) to
category c ∈ C. Similarly, let Xw ∈ {0, 1} be a random variable denoting the event that
the word w occurred in a random document. The Mutual Information between Xc and Xw

is

I(Xc, Xw) =
∑

Xc,Xw∈{0,1}
P (Xc, Xw) log

P (Xc, Xw)
P (Xc)P (Xw)

. (1)

Note that when evaluating I(Xc, Xw) from a sample of documents, we compute P (Xc, Xw),
P (Xc) and P (Xw) using their empirical estimates.2 For each category c, all the words are
sorted according to decreasing value of I(Xc, Xw) and the k top scored words are kept,
where k is a pre-specified or data-dependent parameter. Thus, for each category there is a
specialized representation of documents projected to the most discriminative words for the
category.3 In the sequel we refer to this Mutual Information feature selection technique as
“MI feature selection” or simply as “MI”.

Dumais et al. (1998) show that together with a Support Vector Machine (SVM) clas-
sifier, this MI feature selection method yields a 92.0% break-even point (BEP) on the 10

1. Specifically, we refer to precision/recall-based performance measures such as break-even-point (BEP)
and F-measure and to uni-labeled and multi-labeled categorization. See Section 5.1 for further details.

2. Namely, P (Xc, Xw) = Nw(c)
N(c)

, P (Xc) = N(c)
N

, P (Xw) = Nw
N

, where Nw(c) is a number of occurrences of

word w in category c, N(c) is the total number of words in c, Nw is a number of occurrences of word w
in all the categories, and N is the total number of words.

3. Note that throughout the paper we consider categorization schemes that decompose m-category catego-
rization problems into m binary problems in a standard ‘one-against-all’ fashion. Other decompositions
based on error correcting codes are also possible; see (Allwein et al., 2000) for further details.
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largest categories in the Reuters dataset.4 As far as we know this is the best multi-labeled
categorization result of the (10 largest categories of the) Reuters dataset. Therefore, in this
work we consider the SVM classifier with MI feature selection as a baseline for handling
BOW-based categorization. Some other recent works also provide strong evidence that
SVM is among the best classifiers for text categorization. Among these works it is worth
mentioning the empirical study in Yang and Liu (1999) (who showed that SVM outper-
forms other classifiers, including kNN and Naive Bayes, on Reuters with both large and
small training sets) and the theoretical account of Joachims (2001) for the suitability of
SVM for text categorization.

Baker and McCallum (1998) apply the distributional clustering scheme of Pereira et al.
(1993) (see Section 3) for clustering words represented as distributions over categories of
the documents where they appear. Given a set of categories C = {ci}m

i=1, a distribution of a
word w over the categories is {P (ci|w)}m

i=1. Then the words (represented as distributions)
are clustered using an agglomerative clustering algorithm. Using a naive Bayes classifier
(operated on these conditional distributions) the authors tested this method for uni-labeled
categorization of the 20NG dataset and reported an 85.7% accuracy. They also compare
this word cluster representation to other feature selection and generation techniques such as
Latent Semantic Indexing (see, e.g., Deerwester et al., 1990), the above Mutual Information
index and the Markov “blankets” feature selection technique of Koller and Sahami (1996).
The authors conclude that categorization that is based on word clusters is slightly less
accurate than the other methods while keeping a significantly more compact representation.

The “distributional clustering” approach of Pereira et al. (1993) is a special case of
the general Information Bottleneck (IB) clustering framework presented in Tishby et al.
(1999); see Section 3.1 for further details. Slonim and Tishby (2001) further study the
power of this distributional word clusters representation and motivate it in Slonim and
Tishby (2000) within the more general IB framework. They show that categorization based
on this representation can improve the accuracy over the BOW representation whenever the
training set is small (about 10 documents per category). Specifically, using a Naive Bayes
classifier on a dataset consisting of 10 categories of 20NG, they observe 18.4% improvement
in accuracy over a BOW-based categorization.

Joachims (1998b) used an SVM classifier for a multi-labeled categorization of Reuters
without feature selection, and achieved a break-even point of 86.4%. In Joachims (1997),
the author also investigates uni-labeled categorization of the 20NG dataset, and applies the
Rocchio classifier (Rocchio, 1971) over TFIDF-weighted (see, e.g., Manning and Schütze,
1999) BOW representation that is reduced using the Mutual Information index. He obtains
90.3% accuracy, which to-date is, to our knowledge, the best published accuracy of a uni-
labeled categorization of the 20NG dataset. Joachims (1999) also experiments with SVM
categorization of the WebKB dataset (see details of these results in the last row in Table 1).

Schapire and Singer (1998) consider text categorization using a variant of AdaBoost
(Freund and Schapire, 1996) applied with one-level decision trees (also known as decision
stamps) as the base classifiers. The resulting algorithm, called BoosTexter, achieves 86.0%
BEP on all the categories of Reuters (ModApte split). Weiss et al. (1999) also employ
boosting (using decision trees as the base classifiers and an adaptive resampling scheme).

4. It is also shown in (Dumais et al., 1998) that SVM is superior to other inducers (Rocchio, decision trees,
Naive Bayes and Bayesian Nets).
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They categorize Reuters (ModApte split) with 87.8% BEP using the largest 95 categories
(each having at least 2 training examples). To our knowledge this is the best result that
has been achieved on (almost) the entire Reuters dataset.

Table 1 summarizes the results that were discussed in this section.

Authors Dataset Feature Classifier Main Result Comments
Selection or
Generation

Dumais et al. (1998) Reuters MI and other SVM, Rocchio, SVM + MI is Our baseline
feature decision trees, best: 92.0% BEP for Reuters
selection Naive Bayes, on 10 largest (10 largest
methods Bayesian nets categories categories)

Joachims (1998b) Reuters none SVM 86.4% BEP

Schapire and Singer Reuters none Boosting 86% BEP
(1998) (BoosTexter)

Weiss et al. (1999) Reuters none Boosting of 87.8% BEP Best on 95
decision trees categories

of Reuters

Yang and Liu (1999) Reuters none SVM, kNN, SVM is best: 95 categories
LLSF, NB 86% F-measure

Joachims (1997) 20NG MI over Rocchio 90.3% accuracy Our baseline
TFIDF (uni-labeled) for 20NG
representation

Baker and 20NG Distributional Naive Bayes 85.7% accuracy
McCallum (1998) clustering (uni-labeled)

Slonim and Tishby 10 cate- Information Naive Bayes Up to 18.4%
(2000) gories Bottleneck improvement over

of 20NG BOW on small
training sets

Joachims (1999) WebKB none SVM 94.2% - “course” Our baseline
79.0% - “faculty” for WebKB
53.3% - “project”
89.9% - “student”

Table 1: Summary of related results.

3. Methods and algorithms

The text categorization scheme that we study is based on two components: (i) a representa-
tion scheme of documents as “distributional clusters” of words, and (ii) an SVM inducer. In
this section we describe both components. Since SVMs are rather familiar and thoroughly
covered in the literature, our main focus in this section is on the Information Bottleneck
method and distributional clustering.

3.1 Information Bottleneck and distributional clustering

Data clustering is a challenging task in information processing and pattern recognition. The
challenge is both conceptual and computational. Intuitively, when we attempt to cluster a
dataset, our goal is to partition it into subsets such that points in the same subset are more
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“similar” to each other than to points in other subsets. Common clustering algorithms
depend on choosing a similarity measure between data points and a “correct” clustering
result can be dependent on an appropriate choice of a similarity measure. The choice of
a “correct” measure must be defined relative to a particular application. For instance,
consider a hypothetical dataset containing articles by each of two authors, so that half of
the articles authored by each author discusses one topic, and the other half discusses another
topic. There are two possible dichotomies of the data which could yield two different bi-
partitions: according to the topic or according to the writing style. When asked to cluster
this set into two sub-clusters, one cannot successfully achieve the task without knowing the
goal. Therefore, without a suitable target at hand and a principled method for choosing
a similarity measure suitable for the target, it can be meaningless to interpret clustering
results.

The Information Bottleneck (IB) method of Tishby, Pereira, and Bialek (1999) is a
framework that can in some cases provide an elegant solution to this problematic “metric
selection” aspect of data clustering. Consider a dataset given by i.i.d. observations of a
random variable X. Informally, the IB method aims to construct a relevant encoding of the
random variable X by partitioning X into domains that preserve (as much as possible) the
Mutual Information between X and another “relevance” variable, Y . The relation between
X and Y is made known via i.i.d. observations from the joint distribution P (X, Y ). Denote
the desired partition (clustering) of X by X̃. We determine X̃ by solving the following
variational problem: Maximize the Mutual Information I(X̃, Y ) with respect to the parti-
tion P (X̃|X), under a minimizing constraint on I(X̃, X). In particular, the Information
Bottleneck method considers the following optimization problem: Maximize

I(X̃, Y )− βI(X̃,X)

over the conditional P (X̃|X), where the parameter β determines the allowed amount of
reduction in information that X̃ bears on X. Namely, we attempt to find the optimal
tradeoff between the minimal partition of X and the maximum preserved information on
Y . In Tishby et al. (1999) it is shown that a solution for this optimization problem is
characterized by

P (X̃|X) =
P (X̃)

Z(β, X)
exp

[
−β

∑

Y

P (Y |X) ln
(

P (Y |X)
P (Y |X̃)

)]
,

where Z(β,X) is a normalization factor, and P (Y |X̃) in the exponential is defined implic-
itly, through Bayes’ rule, in terms of the partition (assignment) rules P (X̃|X), P (Y |X̃) =

1
P (X̃)

∑
X P (Y |X)P (X̃|X)P (X) (see Tishby et al., 1999, for details). The parameter β is

a Lagrange multiplier introduced for the constrained information, but using a thermody-
namical analogy β can also be viewed as an inverse temperature, and can be utilized as an
annealing parameter to choose a desired cluster resolution.

Before we continue and present the IB clustering algorithm in the next section, we
note on the contextual background of the IB method and its connection to “distributional
clustering”. Pereira, Tishby, and Lee (1993) introduced “distributional clustering” for dis-
tributions of verb-object pairs. Their algorithm clustered nouns represented as distributions
over co-located verbs (or verbs represented as distributions over co-located nouns). This

6



Distributional Word Clusters vs. Words for Text Categorization

clustering routine aimed at minimizing the average distributional similarity (in terms of
the Kullback-Leibler divergence, see Cover and Thomas, 1991) between the conditional
P (verb|noun) and the noun centroid distributions (i.e. these centroids are also distribu-
tions over verbs). It turned out that this routine is a special case of the more general IB
framework. IB clustering has since been used to derive a variety of effective clustering and
categorization routines (see, e.g., Slonim and Tishby, 2001; El-Yaniv and Souroujon, 2001;
Slonim et al., 2002) and has interesting extensions (Friedman et al., 2001; Chechik and
Tishby, 2002). We note also that unlike other variants of distributional clustering (such as
the PLSI approach of Hoffman, 2001), the IB method is not based on a generative (mixture)
modelling approach (including their assumptions) and is therefore more robust.

3.2 Distributional clustering via deterministic annealing

Given the IB Markov chain condition X̃ ↔ X ↔ Y (which is not an assumption on the
data; see Tishby et al., 1999, for details), a solution to the IB optimization satisfies the
following self-consistent equations:

P (X̃|X) =
P (X̃)

Z(β, X)
exp

[
−β

∑

Y

P (Y |X) ln
(

P (Y |X)
P (Y |X̃)

)]
; (2)

P (X̃) =
∑

X

P (X)P (X̃|X); (3)

P (Y |X̃) =
∑

X

P (Y |X)P (X|X̃). (4)

In Tishby et al. (1999), it is shown that a solution can be obtained by starting with an
arbitrary solution and then iterating the equations. For any value of β this procedure is
guaranteed to converge.5 Lower values of the β parameter (high “temperatures”) corre-
spond to poor distributional resolution (i.e. fewer clusters) and higher values of β (low
“temperatures”) correspond to higher resolutions (i.e. more clusters).

We use a hierarchical top-down clustering procedure for recovering the distributional IB
clusters. A pseudo-code of the algorithm is given in Algorithm 1.6 Starting with one cluster
(very small β) that contains all the data we incrementally achieve the desired number of
clusters by performing a process consisting of annealing stages. At each annealing stage
we increment β and attempt to split existing clusters. This is done by creating (for each
centroid) a new “ghost” centroid at some random small distance from the original centroid.
We then attempt to cluster the points (distributions) using all (original and ghost) centroids
by iterating the above IB self-consisting equations, similar to the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). During these iterations the centroids are adjusted
to their (locally) optimal positions and (depending on the annealing increment of β) some
“ghost” centroids can merge back with their centroid sources. Note that in this scheme
(as well as in the similar deterministic annealing algorithm of Rose, 1998), one has to use

5. This procedure is analogous to the Blahut-Arimoto algorithm in Information Theory (Cover and Thomas,
1991).

6. A similar annealing procedure procedure, known as deterministic annealing, was introduced in the con-
text of clustering by Rose (1998).
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Input:
P (X, Y ) - Observed joint distribution of two random variables X and Y
k - desired number of centroids
βmin, βmax - minimal / maximal values of β
ν > 1 - annealing rate
δconv > 0 - convergence threshold, δmerge > 0 - merging threshold

Output:
Cluster centroids, given by {P (Y |x̃i)}k

i=1

Cluster assignment probabilities, given by P (X̃|X)

Initiate β ← βmin - current β parameter
Initiate r ← 1 - current number of centroids
repeat
{ 1. “EM”-like iteration: }
Compute P (X̃|X), P (X̃) and P (Y |X̃) using Equations (2), (3) and (4) respectively
repeat

Let Pold(X̃|X) ← P (X̃|X)
Compute new values for P (X̃|X), P (X̃) and P (Y |X̃) using (2), (3) and (4)

until for each x: ‖P (X̃|x)− Pold(X̃|x)‖ < δconv

{ 2. Merging: }
for all i, j ∈ [1, r] s.t. i < j and ‖P (Y |x̃i)− P (Y |x̃j)‖ < δmerge do

Merge x̃i and x̃j : P (x̃i|X) = P (x̃i|X) + P (x̃j |X)
Let r ← r − 1

end for
{ 3. Centroid ghosting: }
for all i ∈ [1, r] do

Create x̃r+i s.t. ‖P (Y |x̃r+i)− P (Y |x̃i)‖ = δmerge

Let P (x̃i|X) ← 1
2
P (x̃i|X), P (x̃r+i|X) ← 1

2
P (x̃i|X)

end for
Let r ← 2r, β ← νβ

until r > k or β > βmax

If r > k then merge r − k closest centroids (each to its closest centroid neighbor)

Algorithm 1: Information Bottleneck distributional clustering

an appropriate annealing rate in order to identify phase transitions which correspond to
cluster splits.

An alternative agglomerative (bottom-up) hard-clustering IB algorithm was developed
by Slonim and Tishby (2000). This algorithm generates hard clustering of the data and
thus approximates the above IB clustering procedure. Note that the time complexity of this
algorithm is O(n2), where n is the number of data points (distributions) to be clustered
(see also an approximate faster agglomerative procedure in Baker and McCallum, 1998).

The application of the IB clustering algorithm in our context is straightforward. The
variable X represents words that appear in training documents. The variable Y represents
class labels and thus, the joint distribution P (X,Y ) is characterized by pairs (w, c), where
w is a word and c is the class label of the document where w appears. Starting with the
observed conditionals {P (Y = c|X = w)}c (giving for each word w its class distribution) we
cluster these distributions using Algorithm 1. For a pre-specified number of clusters k the
output of Algorithm 1 is: (i) k centroids, given by the distributions {P (X̃ = w̃|X = w)}w̃

for each word w, where w̃ are the word centroids (i.e. there are k such word centroids which
represent k word clusters); (ii) Cluster assignment probabilities given by P (X̃|X). Thus,
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each word w may (partially) belong to all k clusters and the association weight of w to the
cluster represented by the centroid w̃ is P (w̃|w).

The time complexity of Algorithm 1 is O(c1c2mn), where c1 is an upper limit on the
number of annealing stages, c2 is an upper limit on the number of convergence stages, m is
the number of categories and n is the number of data points to cluster.

Word Clustering to 300 clusters Clustering to 50 clusters

at w̃97 (1.0) w̃44 (0.996655) w̃21 (0.00334415)

ate w̃205 (1.0) w̃42 (1.0)

atheism w̃56 (1.0) w̃3 (1.0)

atheist w̃76 (1.0) w̃3 (1.0)

atheistic w̃56 (1.0) w̃3 (1.0)

atheists w̃76 (1.0) w̃3 (1.0)

atmosphere w̃200 (1.0) w̃33 (1.0)

atmospheric w̃200 (1.0) w̃33 (1.0)

atom w̃92 (1.0) w̃13 (1.0)

atomic w̃92 (1.0) w̃35 (1.0)

atoms w̃92 (1.0) w̃13 (1.0)

atone w̃221 (1.0) w̃14 (0.998825) w̃13 (0.00117386)

atonement w̃221 (1.0) w̃12 (1.0)

atrocities w̃4 (0.99977) w̃1 (0.000222839) w̃5 (1.0)

attached w̃251 (1.0) w̃30 (1.0)

attack w̃71 (1.0) w̃28 (1.0)

attacked w̃4 (0.99977) w̃1 (0.000222839) w̃10 (1.0)

attacker w̃103 (1.0) w̃28 (1.0)

attackers w̃4 (0.99977) w̃1 (0.000222839) w̃5 (1.0)

attacking w̃4 (0.99977) w̃1 (0.000222839) w̃10 (1.0)

attacks w̃71 (1.0) w̃28 (1.0)

attend w̃224 (1.0) w̃15 (1.0)

attorney w̃91 (1.0) w̃28 (1.0)

attribute w̃263 (1.0) w̃22 (1.0)

attributes w̃263 (1.0) w̃22 (1.0)

Table 2: A clustering example of 20NG words. w̃i are centroids to which the words “belong”,
the centroid weights are shown in the brackets.

In Table 2 we provide an example of the output of Algorithm 1 applied to the 20NG
corpus (see Section 4.2) with both k = 300 and k = 50 cluster centroids. For instance, we
see that P (w̃4|attacking) = 0.99977 and P (w̃1|attacking) = 0.000222839. Thus, the word
“attacking” mainly belongs to cluster w̃4. As can be seen, all the words in the table belong
to a single cluster or mainly to a single cluster. With values of k in this range this behavior
is typical to most of the words in this corpus (the same is also true for the Reuters and
WebKB datasets). Only a small fraction of less than 10% of words significantly belong to
more than one cluster, for any number of clusters 50 6 k 6 500. It is also interesting to
note that IB clustering often results in word stemming. For instance, “atom” and “atoms”
belong to the same cluster. Moreover, contextually synonymous words are often assigned to
the same cluster. For instance, many “computer words” such as “computer”, “hardware”,
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“ibm”, “multimedia”, “pc”, “processor”, “software”, “8086” etc. compose the bulk of one
cluster.

3.3 Support Vector Machines (SVMs)

The Support Vector Machine (SVM) (Boser et al., 1992; Schölkopf and Smola, 2002) is
a strong inductive learning scheme that enjoys a considerable theoretical and empirical
support. As noted in Section 2 there is much empirical support for using SVMs for text
categorization (Joachims, 2001; Dumais et al., 1998, etc.).

Informally, for linearly separable two-class data, the (linear) SVM computes the maxi-
mum margin hyperplane that separates the classes. For non-linearly separable data there
are two possible extensions. The first (Cortes and Vapnik, 1995) computes a “soft” maxi-
mum margin separating hyperplane that allows for training errors. The accommodation of
errors is controlled using a fixed cost parameter. The second solution is obtained by implic-
itly embedding the data into a high (or infinite) dimensional space where the data is likely
to be separable. Then, a maximum margin hyperplane is sought in this high-dimensional
space. A combination of both approaches (soft margin and embedding) is often used.

The SVM computation of the (soft) maximum margin is posed as a quadratic optimiza-
tion problem that can be solved in time complexity of O(kn2), where n is the training set
size and k is the dimension of each point (number of features). Thus, when applying SVM
for text categorization of large datasets, an efficient representation of the text can be of
major importance.

SVMs are well covered by numerous papers, books and tutorials and therefore we sup-
press further descriptions here. Following Joachims (2001) and Dumais et al. (1998) we use
a linear SVM in all our experiments. The implementation we use is SVMlight of Joachims.7

3.4 Putting it all together

For handling m-class categorization problems (m > 2) we choose (for both the uni-labeled
and multi-labeled settings) a straightforward decomposition into m binary problems. Al-
though this decomposition is not the best for all datasets (see, e.g., Allwein et al., 2000;
Fürnkranz, 2002) it allows for a direct comparison with the related results (which were
all achieved using this decomposition as well, see Section 2). Thus, for a categorization
problem into m classes we construct m binary classifiers such that each classifier is trained
to distinguish one category from the rest. In multi-labeled categorization (see Section 5.1)
experiments we construct for each category a “hard” (threshold) binary SVM and each test
document is considered by all binary classifiers. The subset of categories attributed for this
document is determined by the subset of classifiers that “accepted” it. On the other hand,
in uni-labeled experiments we construct for each category a confidence-rated SVM that out-
put for a (test) document a real confidence-rate based on the distance of the point to the
decision hyperplane. The (single) category of a test document is determined by the classifier
that outputs the largest confidence rate (this approach is sometimes called “max-win”).

A major goal of our work is to compare two categorization schemes based on the two
representations: the simple BOW representation together with Mutual Information feature

7. The SVMlight software can be downloaded at: http://svmlight.joachims.org/.
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selection (called here BOW+MI ) and a representation based on word clusters computed
via IB distributional clustering (called here IB).

We first consider a BOW+MI uni-labeled categorization. Given a training set of docu-
ments in m categories, for each category c, a binary confidence-rated linear SVM classifier is
trained using the following procedure: The k most discriminating words are selected accord-
ing to the Mutual Information between the word w and the category c (see Equation (1)).
Then each training document of category c is projected over the corresponding k “best”
words and for each category c a dedicated classifier hc is trained to separate c from the
other categories. For categorizing a new (test) document d, for each category c we project
d over the k most discriminating words of category c. Denoting a projected document d by
dc, we compute hc(dc) for all categories c. The category attributed for d is arg maxc hc(dc).
For multi-labeled categorization the same procedure is applied except that now we train,
for each category c, hard (non-confidence-rated) classifiers hc and the subset of categories
attributed for a test document d is {c : hc(dc) = 1}.

The structure of the IB categorization scheme is similar (in both the uni-labeled and
multi-labeled settings) but now the representation of a document consists of vectors of word
cluster counts corresponding to a cluster mapping (from words to cluster centroids) that is
computed for all categories simultaneously using the Information Bottleneck distributional
clustering procedure (Algorithm 1).

4. Datasets

4.1 Reuters-21578

The Reuters-21578 corpus contains 21578 articles taken from the Reuters newswire.8 Each
article is typically designated into one or more semantic categories such as “earn”, “trade”,
“corn” etc., where the total number of categories is 114. We used the ModApte split, which
consists of a training set of 7063 articles and a test set of 2742 articles.9

In both the training and test sets we preprocessed each article so that any additional
information except for the title and the body was removed. In addition, we lowered the
case of letters. Following Dumais et al. (1998) we generated distinct features for words
that appear in article titles. In the IB-based setup (see Section 3.4) we applied a filter on
low-frequency words: we removed words that appear in Wlow freq articles or less, where
Wlow freq is determined using cross-validation (see Section 5.2). In the BOW+MI setup
this filtering of low-frequency words is essentially not relevant since these words are already
filtered out by the Mutual Information feature selection index.

8. Reuters-21578 can be found at: http://www.daviddlewis.com/resources/testcollections/reuters21578/.
9. Note that in these figures we count documents with at least one label. The original split contains 9603

training documents and 3299 test documents where the additional articles have no labels. While in
practice it may be possible to utilize additional unlabeled documents for improving performance using
semi-supervised learning algorithms (see, e.g., El-Yaniv and Souroujon, 2001), in this work we simply
discarded these documents.

11
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4.2 20 Newsgroups

The 20 Newsgroups (20NG) corpus contains 19997 articles taken from the Usenet news-
groups collection.10 Each article is designated into one or more semantic categories and the
total number of categories is 20, all of them are of about the same size. Most of the articles
have only one semantic label, while about 4.5% of the articles have two or more labels.
Following Schapire and Singer (2000) we used the “Xrefs” field of the article headers to
detect multi-labeled documents and to remove duplications. We preprocessed each article
so that any additional information except for the subject and the body was removed. In
addition, we filtered out lines that seemed to be part of binary files sent as attachments or
pseudo-graphical text delimiters. A line is considered to be a “binary” (or a delimiter) if
it is longer than 50 symbols and contains no blanks. Overall we removed 23057 such lines
(where most of these occurrences appeared in a dozen of articles overall). Also, we lowered
the case of letters. As in the Reuters dataset, in the IB-based setup we applied a filter on
low-frequency words, using the parameter Wlow freq determined via cross-validation.

4.3 WebKB: World Wide Knowledge Base

The World Wide Knowledge Base dataset (WebKB)11 is a collection of 8282 web pages
obtained from four academic domains. The WebKB was collected by Craven et al. (1998).
The web pages in the WebKB set are labeled using two different polychotomies. The first
is according to topic and the second is according to web domain. In our experiments we
only considered the first polychotomy, which consists of 7 categories: course, department,
faculty, project, staff, student and other. Following Nigam et al. (1998) we discarded the
categories other12, department and staff. The remaining part of the corpus contains 4199
documents in four categories. Table 3 specifies the 4 remaining categories and their sizes.

Category Number of articles Proportion (%)
course 930 22.1
faculty 1124 26.8
project 504 12.0
student 1641 39.1

Table 3: Some essential details of WebKB categories.

Since the web pages are in HTML format, they contain much non-textual information:
HTML tags, links etc. We did not filter this information because some of it is useful
for categorization. For instance, in some documents anchor-texts of URLs are the only
discriminative textual information. We did however filter out non-literals and lowered the
case of letters. As in the other datasets, in the IB-based setup we applied a filter on
low-frequency words, using the parameter Wlow freq (determined via cross-validation).

10. The 20 Newsgroups can be found at: http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.
11. WebKB can be found at: http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/.
12. Note however that other is the largest category in WebKB and consists about 45% of this set.
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5. Experimental setup

5.1 Optimality criteria and performance evaluation

We are given a training set Dtrain = {(d1, `1), . . . , (dn, `n)} of labeled text documents,
where each document di belongs to a document set D and the label `i = `i(di) of di is
within a predefined set of categories C = {c1, . . . , cm}. In the multi-labeled version of text
categorization, a document can belong to several classes simultaneously. That is, both h(d)
and `(d) can be sets of categories rather than single categories. In the case where each
document has only a single label we say that the categorization is uni-labeled.

We measure the empirical effectiveness of multi-labeled text categorization in terms
of the classical information retrieval parameters of “precision” and “recall” (Baeza-Yates
and Ribeiro-Neto, 1999). Consider a multi-labeled categorization problem with m classes,
C = {c1, . . . , cm}. Let h be a classifier that was trained for this problem. For a document d,
let h(d) ⊆ C be the set of categories designated by h for d. Let `(d) ⊆ C be true categories of
d. Let Dtest ⊂ D be a test set of “unseen” documents that were not used in the construction
of h. For each category ci, define the following quantities:

TPi =
∑

d∈Dtest

I [ci ∈ `(d) ∧ ci ∈ h(d)] ,

TNi =
∑

d∈Dtest

I [ci ∈ `(d) ∧ ci 6∈ h(d)] ,

FPi =
∑

d∈Dtest

I [ci 6∈ `(d) ∧ ci ∈ h(d)] ,

where I[·] is the indicator function. For example, FPi (the “false positives” with respect to
ci) is the number of documents categorized by h into ci whose true set of labels does not
include ci, etc. For each category ci we now define the precision Pi = Pi(h) of h and the
recall Ri = Ri(h) with respect to ci as Pi = TPi

TPi+FPi
and Ri = TPi

TPi+TNi
. The overall micro-

averaged precision P = P (h) and recall R = R(h) of h is a weighted average of the individual
precisions and recalls (weighted with respect to the sizes of the test set categories). That is,
P =

Pm
i=1 TPiPm

i=1(TPi+FPi)
and R =

Pm
i=1 TPiPm

i=1(TPi+TNi)
. Due to the natural tradeoff between precision

and recall, the following two quantities are often used in order to measure the performance
of a classifier:

• F-measure: The harmonic mean of precision and recall; that is F = 2
1/P+1/R .

• Break-Even Point (BEP): A flexible classifier provides the means to control the trade-
off between precision and recall. For such classifiers, the value of P (and R) satisfying
P = R is called the break-even point (BEP). Since it is time consuming to evaluate
the exact value of the BEP it is customary to estimate it using the arithmetic mean
of P and R.

The above performance measures concern multi-labeled categorization. In a uni-labeled
categorization the accepted performance measure is accuracy, defined to be the percentage
of correctly labeled documents in Dtest. Specifically, assuming that both h(d) and `(d) are

13
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singletons (i.e. uni-labeling), the accuracy Acc(h) of h is Acc(h) = 1
|Dtest|

∑
d∈Dtest

I[h(d) =
`(d)]. Is it not hard to see that in this case the accuracy equals the precision and recall
(and the estimated break-even point).

Following Dumais et al. (1998) (and for comparison with this work), in our multi-
labeled experiments (Reuters and 20NG) we report on micro-averaged break-even point
(BEP) results. In our uni-labeled experiments (20NG and WebKB) we report on accuracy.
Note that we experiment with both uni-labeled and multi-labeled categorization of 20NG.
Although this set is in general multi-labeled, the proportion of multi-labeled articles in the
dataset is rather small (about 4.5%) and therefore a uni-labeled categorization of this set
is also meaningful. To this end, we follow Joachims (1997) and consider our (uni-labeled)
categorization of a test document to be correct if the label we assign to the document
belongs to its true set of labels.

In order to better estimate the performance of our algorithms on test documents we use
standard cross-validation estimation in our experiments with 20NG and WebKB. However,
when experimenting with Reuters, for compatibility with the experiments of Dumais et al.
we use its standard ModApte split (i.e. without cross-validation). In particular, in both
20NG and WebKB we use 4-fold cross-validation where we randomly and uniformly split
each category into 4 folds and we took three folds for training and one fold for testing. Note
that this 3/4:1/4 split is proportional to the training to test set size ratios of the ModApte
split of Reuters. In the cross-validated experiments we always report on the estimated aver-
age (over the 4 folds) performance (either BEP or accuracy), estimated standard deviation
and standard error of the mean.

5.2 Hyperparameter optimization

A major issue when working with SVMs (and in fact with almost all inductive learning
algorithms) is parameter tuning. As noted earlier (in Section 3.3), we used linear SVMlight
in our implementation. The only relevant parameters for the linear kernel we use are C
(trade-off between training error and margin) and J (cost-factor, by which training errors
on positive examples outweigh errors on negative examples). We optimize these parameters
using a validation set that consists one third of the three-fold training set.13 For each of
these parameters we fix a small set of feasible values14 and in general, we attempt to test
performance (over the validation set) using all possible combinations of parameter values
over the feasible sets.

Note that tuning the parameters C and J is different in the multi-labeled and uni-labeled
settings. In the multi-labeled setting we tune the parameters of each individual (binary)
classifier independently of the other classifiers. In the uni-labeled setting, parameter tuning
is more complex. Since we use the max-win decomposition, the categorization of a document
is dependent on all the binary classifiers involved. For instance, if all the classifiers except
for one are perfect, this last bad classifier can generate confidence rates that are maximal
for all the documents, which results in extremely poor performance. Therefore, a global
tuning of all the binary classifiers is necessary. Nevertheless, in the case of the 20NG, where

13. Dumais et al. (1998) also use a 1/3 random subset of the training set for validated parameter tuning.
14. Specifically, for the C parameter the feasible set is {10−4, 10−3, 10−2, 10−1} and for J it is

{0.5, 1, 2, . . . , 10}.
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we have 20 binary classifiers, a global exhaustive search is too time-consuming and, ideally,
a clever search in this high dimensional parameter space should be considered. Instead,
we simply utilized the information we have on the 20NG categories to reduce the size of
the parameter space. Specifically, among the 20 categories of 20NG there are some highly
correlated ones and we split the list of the categories into 9 groups as in Table 4.15 For
each group the parameters are tuned together and independently of other groups. This
way we achieve an approximately global parameter tuning also on the 20NG set. Note that
the (much) smaller size of WebKB (both number of categories and number of documents)
allow for global parameter tuning over the feasible parameter value sets without any need
for approximation.

Group Content

1 (a) talk.religion.misc; (b) soc.religion.christian (c) alt.atheism
2 (a) rec.sport.hockey; (b) rec.sport.baseball
3 (a) talk.politics.mideast
4 (a) sci.med; (b) talk.politics.guns; (c) talk.politics.misc
5 (a) rec.autos; (b) rec.motorcycles; (c) sci.space
6 (a) comp.os.ms-windows.misc; (b) comp.graphics; (c) comp.windows.x
7 (a) sci.electronics; (b) comp.sys.mac.hardware; (c) comp.sys.ibm.pc.hardware
8 (a) sci.crypt
9 (a) misc.forsale

Table 4: A split of the 20NG’s categories into thematic groups.

In IB categorization also the parameter Wlow freq (see Section 4), which determines a
filter on low-frequency words, has a significant impact on categorization quality. Therefore,
in IB categorization we search for both the SVM parameters and Wlow freq. To reduce the
time complexity we employ the following simple search heuristics. We first fix random values
of C and J and then, using the validation set, we optimize Wlow freq.16 After determining
Wlow freq we tune both C and J as described above.17

5.3 Fair vs. unfair parameter tuning

In our experiments with the BOW+MI and IB categorizers we sometimes perform unfair
parameter tuning in which we tune the SVM parameters over the test set (rather than the
validation set). If a categorizer A achieves better performance than a categorizer B while
B’s parameters were tuned unfairly (and A’s parameters were tuned fairly) then we can get
stronger evidence that A performs better than B. In our experiments we sometimes use
this technique to accentuate differences between two categorizers.

15. It is important to note that an almost identical split can be computed in a completely unsupervised
manner using the Multivariate Information Bottleneck (see Friedman et al., 2001, for further details).

16. The set of feasible Wlow freq values we use is {0, 2, 4, 6, 8}.
17. The “optimal” determined value of Wlow freq for Reuters is 4, for WebKB (across all folds) it is 8 and

for 20NG it is 0. The number of distinct words after removing low-frequency words is: 9,953 for Reuters
(Wlow freq = 4), about 110,000 for 20NG (Wlow freq = 0) and about 7,000 for WebKB (Wlow freq = 8),
depending on the fold.
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6. Categorization results

We compare text categorization results of the IB and BOW+MI settings. For compatibility
with the original BOW+MI setting of Dumais et al. (1998), where the number of best
discriminating words k is set to 300, we report on results with k = 300 for both settings.
Additionally, we show BOW+MI results with k = 15000. We fixed this value of k because
we could not obtain significantly better results with any other k in this setting. We also
report on BOW results without applying MI feature selection.

6.1 Multi-labeled categorization

Table 5 summarizes the multi-labeled categorization results obtained by the two categoriza-
tion schemes (BOW+MI and IB) over Reuters (10 largest categories) and 20NG datasets.
Note that the 92.0% BEP result for BOW+MI over Reuters was established by Dumais
et al. (1998).18 To the best of our knowledge, the 88.6% BEP we obtain on 20NG is the
first reported result of a multi-labeled categorization of this dataset. Previous attempts at
multi-labeled categorization of this set were performed by Schapire and Singer (2000), but
no overall result on the entire set was reported.

Categorizer Reuters (BEP) 20NG (BEP)

BOW+MI 92.0 76.5± 0.4 (0.25)
k = 300 obtained by Dumais et al. (1998) 77.7± 0.5 (0.31) unfair
BOW+MI 92.0 85.6± 0.6 (0.35)
k = 15000 86.3± 0.5 (0.27) unfair
BOW 89.7 86.5± 0.4 (0.26) unfair
IB 91.2 88.6± 0.3 (0.21)
k = 300 92.6 unfair

Table 5: Multi-labeled categorization BEP results for 20NG and Reuters. k is the number
of selected words or word-clusters. All 20NG results are averages of 4-fold cross-
validation. Standard deviations are given after the “±” symbol and standard
errors of the means are given in brackets. “Unfair” indicates unfair parameter
tuning over the test sets (see Section 5.3).

On 20NG the advantage of the IB categorizer over BOW+MI is striking when k = 300
words (and k = 300 word clusters) are used. Note that the 77.7% BEP of BOW+MI is
obtained using unfair parameter tuning (see Section 5.3). However, this difference does
not sustain when we use k = 15, 000 words. Using this rather large number of words
the BOW+MI performance significantly increases to 86.3% (again, using unfair parame-
ter tuning), which taking into account the statistical deviations is similar to the IB BEP
performance. The BOW+MI results that are achieved with fair parameter tuning show an
increase in the gap between the performance of the two methods. Nevertheless, the IB cat-

18. This result was achieved using binary BOW representation, see Section 2. We replicated Dumais et al.’s
experiment and in fact obtained a slightly higher BEP result of 92.3%.

16



Distributional Word Clusters vs. Words for Text Categorization

egorizer achieves this BEP performance using only 300 features (word clusters), almost two
order of magnitude smaller than 15,000. Thus, with respect to 20NG, the IB categorizer
outperforms the BOW+MI categorizer both in BEP performance and in representation
efficiency. We also tried other values of the k parameter, where 300 < k ¿ 15, 000 and
k > 15, 000. We found that the learning curve, as a function of k, is monotone increasing
until it reaches a plateau around k = 15, 000.

We repeat the same experiment over the Reuters dataset but there we obtain different
results. Now the IB categorizer lose its BEP advantage and achieves a 91.2% BEP19, a
slightly inferior (but quite similar) performance to the BOW+MI categorizer (as reported by
Dumais et al., 1998). Note that the BOW+MI categorizer does not benefit from increasing
the number of features up to k = 15, 000 and even hurts by more that 2% from total disuse
of MI feature selection.

Categorizer WebKB (Accuracy) 20NG (Accuracy)

BOW+MI 92.6± 0.3 (0.20) 84.7± 0.7 (0.41)
k = 300 85.5± 0.7 (0.45) unfair
BOW+MI 92.4± 0.5 (0.32) 90.2± 0.3 (0.17)
k = 15000 90.9± 0.2 (0.12) unfair
BOW 92.3± 0.5 (0.40) 91.2± 0.1 (0.08) unfair
IB 89.5± 0.7 (0.41) 91.3± 0.4 (0.24)
k = 300 91.0± 0.5 (0.32) unfair

Table 6: Uni-labeled categorization accuracy for 20NG and WebKB. k is the number of se-
lected words or word-clusters. All accuracies are averages of 4-fold cross-validation.
Standard deviations are given after the “±” symbol and standard errors of the
means are given in brackets. “Unfair” indicates unfair parameter tuning over the
test sets (see Section 5.3).

6.2 Uni-labeled categorization

We also perform uni-labeled categorization experiments using the BOW+MI and IB cate-
gorizers over 20NG and WebKB. The final accuracy results are shown in Table 6. These
results appear to be qualitatively similar to the multi-labeled results presented above with
WebKB replacing Reuters. Here again, over the 20NG set, the IB categorizer is showing
a clear accuracy advantage over BOW+MI with k = 300 and this advantage is diminished
if we take k = 15, 000. On the other hand, we observe a comparable (and similar) accu-
racy of both categorizers over WebKB, and as it is with Reuters, here again the BOW+MI
categorizer does not benefit by increasing the feature set size.

The use of k = 300 word clusters in the IB categorizer is not necessarily optimal. We
also performed this categorization experiment with different values of k ranging from 100
to 1000. The categorization accuracy slightly increases when k moves from 100 to 200, and
does not significantly change when k > 200.

19. Using unfair parameter tuning the IB categorizer achieves 92.6% BEP.
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7. Discussion: corpora complexity vs. representation efficiency

The categorization results reported above show that the performance of the BOW+MI
categorizer and the IB categorizer is sensitive to the dataset being categorized. What makes
the performance of these two categorizers different over different datasets? Why does the
more sophisticated IB categorizer outperform the BOW+MI categorizer (with either higher
accuracy or better representation efficiency) over 20NG but not over Reuters and WebKB?
In this section we study this question and attempt to identify differences between these
corpora that can account for this behavior.

One possible approach to quantify the complexity of a corpus with respect to a catego-
rization system is to observe and analyze learning curves plotting the performance of the
categorizer as a function of the number of words selected for representing each category.
Before presenting such learning curves for the three corpora, we focus on the extreme case
where we categorize each of the corpora using only the three top words per category (where
top-scores are measured using the Mutual Information of words with respect to categories).
Tables 7, 8 and 9 specify (for each corpus) a list of the top three words for each category,
together with the performance achieved by the BOW+MI (binary) classifier of the cate-
gory. For comparison, we also provide the corresponding performance of BOW+MI using
the 15,000 top words (i.e. potentially all the significant words in the corpus). For instance,
observing Table 7, computed for Reuters, we see that based only on the words “vs”, “cts”
and “loss” it is possible to achieve 93.5% BEP when categorizing the category earn. We
note that the word “vs” appears in 87% of the articles of the category earn (i.e., in 914
articles among total 1044 of this category). This word appears in only 15 non-earn articles
in the test set and therefore “vs” can, by itself, categorize earn with very high precision.20

This phenomenon was already noticed by Joachims (1997), who noted that a classifier built
on only one word (“wheat”) can lead to extremely high accuracy when distinguishing be-
tween the Reuters category wheat and the other categories (within a uni-labeled setting).21

The difference between the 20NG and the two other corpora is striking when considering
the relative improvement in categorization quality when increasing the feature set up to
15,000 words. While one can dramatically improve categorization of 20NG by over 150%
with many more words, we observe a relative improvement of only about 15% and 26% in
the case of Reuters and WebKB, respectively.

In Figure 1 we present, for each dataset, a learning curve plotting the obtained per-
formance of the BOW+MI categorizer as a function of the number k of selected words.22

As can be seen, the two curves of both Reuters and WebKB are very similar and almost
reach a plateau with k = 50 words (that were chosen using the greedy Mutual Information
index). This indicates that other words do not contribute much to categorization. But the
learning curve of 20NG continues to rise when 0 < k < 300, and still exhibits a rising slope
with k = 300 words.

20. In the training set the word “vs” appears in 1900 of the 2709 earn articles (70.1%) and only in 14 of the
4354 non-earn articles (0.3%).

21. When using only one word per category, we observed a 74.6% BEP when categorizing Reuters (10 largest
categories), 66.3% accuracy when categorizing WebKB and 34.6% accuracy when categorizing 20NG.

22. In the case of Reuters and 20NG the performance is measured in terms of BEP and in the case of WebKB
in terms of accuracy.
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Figure 1: Learning curves (BEP or accuracy vs. number of words) for the datasets: Reuters-
21578 (multi-labeled, BEP), 20NG (uni-labeled, accuracy) and WebKB (uni-
labeled, accuracy) over the MI-sorted top 10 words (a) and the top 300 words (b)
using the BOW+MI categorizer.

Category 1st word 2nd word 3rd word BEP on BEP on Relative
3 words 15000 words Improvement

earn vs+ cts+ loss+ 93.5% 98.6% 5.4%

acq shares+ vs− Inc+ 76.3% 95.2% 24.7%

money-fx dollar+ vs− exchange+ 53.8% 80.5% 49.6%

grain wheat+ tonnes+ grain+ 77.8% 88.9% 14.2%

crude oil+ bpd+ OPEC+ 73.2% 86.2% 17.4%

trade trade+ vs− cts− 67.1% 76.5% 14.0%

interest rates+ rate+ vs− 57.0% 76.2% 33.6%

ship ships+ vs− strike+ 64.1% 75.4% 17.6%

wheat wheat+ tonnes+ WHEAT+ 87.8% 82.6% -5.9%

corn corn+ tonnes+ vs− 70.3% 83.7% 19.0%

Average 79.9% 92.0% 15.1%

Table 7: Reuters: Three best words (in terms of Mutual Information) and their catego-
rization BEP rate of the 10 largest categories, ‘+’ near a word means that the
appearance of the word predicts the corresponding category, ’−’ means that the
absence of the word predicts the category. Words in upper-case are words that
appeared in article titles (see Section 4.1).

The above findings indicate on a systematic difference between the categorization of the
20NG dataset on the one hand, and of the Reuters and WebKB datasets, on the other hand.
We identify another interesting difference between the corpora. This difference is related
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Category 1st word 2nd word 3rd word Accuracy on Accuracy on Relative
3 words 15000 words Improvement

course courses course homework 79.0% 95.7% 21.1%

faculty professor cite pp 70.5% 89.8% 27.3%

project projects umd berkeley 53.2% 80.8% 51.8%

student com uci homes 78.3% 95.9% 22.4%

Average 73.3% 92.4% 26.0%

Table 8: WebKB: Three best words (in terms of Mutual Information) and their catego-
rization accuracy rate of the 4 representative categories. All the listed words
contribute by their appearance, rather than absence.

Category 1st word 2nd word 3rd word Accuracy Accuracy Relative
on 3 on 15000 Improvement
words words

alt.atheism atheism atheists morality 48.7% 84.8% 74.1%

comp.graphics image jpeg graphics 40.5% 83.1% 105.1%

comp.os.ms- windows m o 60.9% 84.7% 39.0%
windows.misc

comp.sys.ibm. scsi drive ide 13.8% 76.6% 455.0%
pc.hardware

comp.sys.mac. mac apple centris 61.0% 86.7% 42.1%
hardware

comp.windows.x window server motif 46.6% 86.7% 86.0%

misc.forsale 00 sale shipping 63.4% 87.3% 37.6%

rec.autos car cars engine 62.0% 89.6% 44.5%

rec.motorcycles bike dod ride 77.3% 94.0% 21.6%

rec.sport.baseball baseball game year 38.2% 95.0% 148.6%

rec.sport.hockey hockey game team 67.7% 97.2% 43.5%

sci.crypt key encryption clipper 76.7% 95.4% 24.3%

sci.electronics circuit wire wiring 15.2% 85.3% 461.1%

sci.med cancer medical msg 26.0% 92.4% 255.3%

sci.space space nasa orbit 62.5% 94.5% 51.2%

soc.religion.christian god church sin 50.2% 91.7% 82.6%

talk.politics.guns gun guns firearms 41.5% 87.5% 110.8%

talk.politics.mideast israel armenian turkish 54.8% 94.1% 71.7%

talk.politics.misc cramer president ortilink 23.0% 67.7% 194.3%

talk.religion.misc jesus god jehovah 6.6% 53.8% 715.1%

Average 46.83% 86.40% 153.23%

Table 9: 20NG: Three best words (in terms of Mutual Information) and their categoriza-
tion accuracy rate (uni-labeled setting). All the listed words contribute by their
appearance, rather than absence.

to the hyper-parameter Wlow freq (see Section 4). The bottom line is that in the case of
20NG IB categorization improves when Wlow freq decreases while in the case of Reuters and
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WebKB it improves when Wlow freq increases. In other words, more words and even the
most infrequent words can be useful and improve the (IB) categorization of 20NG. On the
other hand, such rare words do add noise in the (IB) categorization of Reuters and WebKB.
Figure 2 depicts the performance of the IB classifier on the three corpora as a function of
Wlow freq. Note again that this opposite sensitivity to rare words is observed with respect
to the IB scheme and the previous discussion concerns the BOW+MI scheme.
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Figure 2: Performance of the IB categorizer as a function of the Wlow freq parameter (that
specifies the threshold of the low frequency word filter: words appearing in
less than Wlow freq articles are removed); uni-labeled categorization of WebKB
and 20NG (accuracy), multi-labeled categorization of Reuters (BEP). Note that
Wlow freq = 0 corresponds to the case where this filter is disabled. The number
of word clusters in all cases is k = 300.

8. Computational efforts

We performed all our experiments using a 600MHz 2G RAM dual processor Pentium III
PC operated by Windows 2000.23 The computational bottlenecks were mainly experienced
over 20NG, which is substantially larger than Reuters and WebKB.

Let us first consider the multi-labeled experiments with 20NG. When running the
BOW+MI categorizer, the computational bottleneck was the SVM training, for which a
single run (one of the 4 cross-validation folds, including both training and testing) could
take a few hours, depending on the parameter values. In general, the smaller the parameters
C and J are, the faster the SVM training is.24

As for the IB categorizer, the SVM training process was faster when the input vectors
consisted of word clusters. However, the clustering itself could take up to one hour for each

23. The IB clustering software, preprocessed datasets and application scripts can be found at:
http://www.cs.technion.ac.il/∼ronb.

24. SVMlight and its parameters are described in Joachims (1998a).
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fold of the entire 20NG set, and required substantial amount of memory (up to 1G RAM).
The overall training and testing time over the entire 20NG in the multi-labeled setting was
about 16 hours (4 hours for each of the 4 folds).

The computational bottleneck when running uni-labeled experiments was the SVM pa-
rameter tuning. It required a repetition for each combination of the parameters and indi-
vidual classifiers (see Section 5.2). Overall the experiments with the IB categorizer took
about 45 hours of CPU time, while the BOW-MI categorizer required about 96 hours (i.e.
4 days).

The experiments with the relatively small WebKB corpus were accordingly less time-
consuming. In particular, the experiments with the SVM+MI categorizer required 7 hours
of CPU time and those with the IB categorizer, about 8 hours. Thus, when comparing these
times with the experiments on 20NG we see that the IB categorizer is less time-consuming
than the BOW+MI categorizer (based on 15000 words) but the clustering algorithm requires
larger memory. On Reuters the experiments ran even faster, because there was no need to
apply cross-validation estimation.

9. Concluding remarks

In this study we have provided further evidence for the effectiveness of a sophisticated
technique for document representation using distributional clustering of words. Previous
studies of distributional clustering of words remained somewhat inconclusive because the
overall absolute categorization performance were not state-of-the-art, probably due to the
weak classifiers they employed (to the best of our knowledge, in all pervious studies of
distributional clustering as a representation method for supervised text categorization, the
classifier used was Naive Bayes).

We show that when Information Bottleneck distributional clustering is combined with
an SVM classifier, it yields high performance (uni-labeled and multi-labeled) categorization
of the three benchmark datasets. In particular, on the 20NG dataset, with respect to either
multi-labeled or uni-labeled categorization, we obtain either accuracy (BEP) or represen-
tation efficiency advantages over BOW when the categorization is based on SVM. This
result indicates that sophisticated document representations can significantly outperform
the standard BOW representation and achieve state-of-the-art performance.

Nevertheless, we found no accuracy (BEP) or representation efficiency advantage to this
feature generation technique when categorizing the Reuters or WebKB corpora. Our study
of the three corpora shows structural differences between them. Specifically, we observe
that Reuters and WebKB can be categorized with close to “optimal” performance using a
small set of words, where the addition of many thousands more words provides no significant
improvement. On the other hand, the categorization of 20NG can significantly benefit from
the use of a large vocabulary. This indicates that the “complexity” of the 20NG corpus
is in some sense higher than that of Reuters and WebKB. In addition, we see that the IB
representation can benefit from including even the most infrequent words when it is applied
with the 20NG corpus. On the other hand, such infrequent words do not affect or even
degrade the performance of the IB categorizer when applied to the Reuters and WebKB
corpora.
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Based on our experience with the above corpora we note that when testing complex
feature selection or generation techniques for text categorization, one should avoid making
definitive conclusions based only on “low-complexity” corpora such as Reuters and We-
bKB. It seems that sophisticated representation methods cannot outperform BOW on such
corpora.

Let us conclude with some questions and directions for future research. Given a pool of
two or more representation techniques and given a corpus, an interesting question is whether
it is possible to combine them in a way that will be competitive with or even outperform the
best technique in the pool. A straightforward approach would be to perform cross-validated
model selection. However, this approach will be at best as good as the best technique
in the pool. Another possibility is to try to combine the representation techniques by
devising a specialized categorizer for each representation and then use ensemble techniques
to aggregate decisions. Other sophisticated approaches such as “co-training” (see, e.g.,
Blum and Mitchell, 1998) can also be considered.

Our application of the IB distributional clustering of words employed document class
labels but generated a global clustering for all categories. Another possibility to consider is
to generate specialized clustering for each (binary) classifier. Another interesting possibility
to try is to combine clustering of n-grams, with 1 6 n 6 N for some small N .

Another interesting question that we did not explore concerns the behavior of IB and
BOW representations when using feature sets of small cardinality (e.g. k = 10). It is
expected that at least in “complex” datasets like 20NG, there should be an advantage to
the IB representation also in this case.

The BOW+MI categorization employed Mutual Information feature selection, where
the number k of features (words) was identical for all categories. It would be interesting to
consider a specialized k for each category. Although it might be hard to identify good set
of vocabularies, this approach may lead to somewhat better categorization and is likely to
generate more efficient representations.

In all our experiments we used the simple-minded one-against-all decomposition tech-
nique. It would be interesting to study other decompositions (perhaps, using error correcting
output coding approaches). The inter-relation between feature selection/generation and the
particular decomposition is of particular importance and may improve text categorization
performance.

We computed our word clustering using the original top-down (soft) clustering IB im-
plementation of Tishby et al. (1999). It would be interesting to explore the power of more
recent IB implementations in this context. Specifically, the IB clustering methods described
in El-Yaniv and Souroujon (2001); Slonim et al. (2002) may yield better clustering in the
sense that they tend to better approximate the optimal IB objective.

Acknowledgements

This research was supported by the Technion and by the Israeli Ministry of Science. We sincerely thank

Thorsten Joachims and Rob Schapire for their generous help in conducting this research. We would also like

to thank Mark Craven, Susan Dumais, Andrew McCallum, Ron Meir, Yiftach Ravid, Yoram Singer, Noam

Slonim and Tong Zhang for their prompt responses and for fruitful discussions. Ran El-Yaniv is a Marcella

S. Gelltman Academic Lecturer. A preliminary version of this work appeared at SIGIR 2001.

23



Bekkerman, El-Yaniv, Tishby, and Winter

References

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. In Proceedings of ICML’00, 17th International Conference
on Machine Learning, pages 9–16. Morgan Kaufmann Publishers, San Francisco, CA,
2000.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley and
ACM Press, 1999.

L.D. Baker and A.K. McCallum. Distributional clustering of words for text classification.
In Proceedings of SIGIR’98, 21st ACM International Conference on Research and Devel-
opment in Information Retrieval, pages 96–103, Melbourne, AU, 1998. ACM Press, New
York, US.

R. Basili, A. Moschitti, and M.T. Pazienza. Language-sensitive text classification. In
Proceedings of RIAO’00, 6th International Conference “Recherche d’Information Assistee
par Ordinateur”, pages 331–343, Paris, France, 2000.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
COLT’98: Proceedings of 11th Annual Conference on Computational Learning Theory,
pages 92–100. Morgan Kaufmann Publishers, San Francisco, US, 1998.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
Fifth Annual Workshop on Computational Learing Theory, pages 144–152, 1992.

M.F. Caropreso, S. Matwin, and F. Sebastiani. A learner-independent evaluation of the
usefulness of statistical phrases for automated text categorization. In Amita G. Chin,
editor, Text Databases and Document Management: Theory and Practice, pages 78–102.
Idea Group Publishing, Hershey, US, 2001.

G. Chechik and N. Tishby. Extracting relevant structures with side information. In Advances
in Neural Information Processing Systems (NIPS), 2002.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning 20, pages 273–297,
1995.

T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,
New York, 1991.

M. Craven, D. DiPasquo, D. Freitag, A.K. McCallum, T.M. Mitchell, K. Nigam, and S. Slat-
tery. Learning to extract symbolic knowledge from the World Wide Web. In Proceedings of
AAAI’98, 15th Conference of the American Association for Artificial Intelligence, pages
509–516, Madison, US, 1998. AAAI Press, Menlo Park, US.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society for Information Science, 41(6):391–
407, 1990.

24



Distributional Word Clusters vs. Words for Text Categorization

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, B(39):1–38, 1977.

S.T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and
representations for text categorization. In Proceedings of CIKM’98, 7th ACM Interna-
tional Conference on Information and Knowledge Management, pages 148–155, Bethesda,
US, 1998. ACM Press, New York, US.

R. El-Yaniv and O. Souroujon. Iterative double clustering for unsupervised and semi-
supervised learning. In Advances in Neural Information Processing Systems (NIPS),
2001.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In International
Conference on Machine Learning, pages 148–156, 1996.

N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby. Multivariate information bottleneck.
In Proceedings of UAI’01, 17th Conference on Uncertainty in Artificial Intelligence, 2001.

J. Fürnkranz. Round robin classification. Journal of Machine Learning Research, 2:721–747,
2002.

T. Hoffman. Unsupervised learning by probabilistic latent semantic analysis. Machine
Learning, 42(1):177–196, 2001.

P.S. Jacobs. Joining statistics with nlp for text categorization. In Proceedings of the Third
Conference on Applied Natural Language Processing, pages 178–185, 1992.

T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text catego-
rization. In D.H. Fisher, editor, Proceedings of ICML’97, 14th International Conference
on Machine Learning, pages 143–151, Nashville, US, 1997. Morgan Kaufmann Publishers,
San Francisco, US.

T. Joachims. Making large-scale support vector machine learning practical, chapter 11,
pages 169–184. MIT Press, Cambridge, MA, 1998a. in B. Scholkopf, C. Burges, A.
Smola. Advances in Kernel Methods: Support Vector Machines.

T. Joachims. Text categorization with support vector machines: learning with many relevant
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